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Abstract - As the dawn of quantum computing is approaching,
we find ourselves in need of cryptographic algorithms that will
withstand these new machines. We know there are methods by
which quantum computers will be able to cryptanalyze the most
commonly used public key-based key agreement and digital
signature algorithms as quantum computers only pose a serious
threat to integer factorization and discrete logarithm problems.
Meanwhile, there are cryptosystems including McEliece
Cryptosystem that rely on general linear code decoding
problem remain secure to quantum attacks. In this study, we
attempt to find out the performance analysis of McEliece
cryptosystem on Raspberry Pi 3; an embedded system where
benchmark parameters such as execution time, energy and
memory consumption are analyzed. All these metrics are
measured for encryption and decryption separately using
different public key and plaintext sizes with various parameters
of Goppa codes. Moreover, a comparative analysis of these
results is outlined, and suitable parameters of Goppa Codes are
identified.

Keywords: Post Quantum Cryptography, IoT Security, McEliece
Crypto Algorithm, Raspberry Pi 3, Goppa Codes

1. INTRODUCTION

Cryptography is the study of techniques to realize
confidentiality and integrity. Either a small image file stored
in a host machine or a huge bank transactions involving
millions of dollars could be protected using encryption
techniques. Encryption plays the major role in almost all the
security services; which uses a key or/and a cipher for
modifying the data to be transmitted. Decryption on the other
hand does exactly the opposite of encryption to recover a
secret message. There are mainly two different types of
encryption; namely Symmetric or asymmetric encryption.
Based on which method is utilized, in decrypting a message,
an exact same encryption key or a key related to encryption
key is used.

Sometimes asymmetric encryption using different but related
keys is also called as Public key encryption; while encryption
and decryption keys are named as public and private keys
respectively. The requirement for asymmetric key systems is
that public keys that are used for encryption should be shared
in a common medium and can be accessed by anyone.
However, the private key used for decryption should be kept
secret by the receiver at all times. Therefore, the public and
private keys form a pair and should be used dependently. In
most cases, the security of cryptosystems relies on the

toughness in breaking this relation between public and
private keys in other words, calculating a private key from a
given public key without any other information. For most
cryptosystems, this problem is easy to tackle if key sizes are
small. However, it could become infeasible if key sizes get
bigger. Therefore, algorithms are classified with a
logarithmic measure of the fastest known attack (in general,
relative to the key length) solving their underlying problem.
Moreover, these complexity models are used in finding the
appropriate key lengths of a cryptosystem to meet the
minimum desired security requirements.

Nevertheless, all complexity and appropriate key length
calculations are based on the classical computation model
where computations are carried more like the way we do by
hand. However, in a quantum computing model, a quantum
computer would enjoy the quantum-mechanical phenomena,
such as superposition and entanglement and solve the hard
problems of classical model in linear time. This brings up the
possibility of breaking the current crypto algorithms and our
need of cryptographic algorithms that will withstand these
new machines. We know there are methods, such as Shor's
algorithm [3] and Grover's algorithm [4], by which quantum
computers will be able to cryptanalyze the most commonly
used public key-based key agreement and digital signature
algorithms. Algorithms such as Diffie-Hellman, RSA, DSA
and ECDSA, which are ubiquitous in today's communication
and networking technology, will be quickly broken if
sufficiently large quantum computers are built. However, it
currently seems that quantum computers only pose a serious
threat to the presumed difficulty of integer factorization and
the difficulty of solving the discrete logarithm problem.
Meanwhile, there are cryptosystems that rely on “other”
problems remain secure to quantum attacks. For instance,
McEliece cryptosystem [1] which depends on “general linear
code decoding problem” is considered as quantum-resistant
(secure even against theoretical quantum level attacks [6])
and studied as a strong candidate for post quantum

cryptography (PQC).

In this work, we investigate the efficiency of McEliece
cryptosystem in embedded systems particularly on
Raspberry Pi 3 [8]. We simply implement the algorithm and
evaluate the performance parameters. In the next two
sections, we will overview and go through implementation
details of McEliece Cryptosystem respectively. In Section 3
we will give the performance analysis of our implementation
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and its dependencies on plaintext and cipher text sizes with
the variations of Goppa parameters. Section 4 will give a
conclusion based on the performance parameters and the its
future scope.

2. MCELIECE CRYPTOSYSTEM

It is a public-key cryptosystem goes back to 70s invented by
R.J McEliece [1]. It is based on a hard problem in coding
theory namely, general linear code decoding problem. The
problem is known to have an NP-hard complexity; hence the
system is considered as a candidate for PQC.

McEliece describes one of the first probabilistic encryption
algorithm. To generate a key pair, one first selects a binary
(n, K)-linear code C that can correct up to t errors. One
requirement for the code C selection is that there has to be an
efficient decoding algorithm so that the code generator
matrix G could be calculated. McEliece [1] proposes to use
the binary Goppa codes [5] in his original algorithm. These
codes belong to the class of algebraic geometric codes
constructed by using a genus-0 curve over binary extension
fields. They have a simple decoding algorithm that converts
a syndrome to an error vector.

After selecting a suited (n, K)-linear code C, one selects a
random k X k binary non-singular matrix S and a random
n X n permutation matrix P. The public key is announced as
(F, t) where F = SGP is an k X n matrix. The public key (F,
t) is also called Disguised Generator Matrix composed of
The Generator Matrix G, the Scramble Matrix S and a
Permutation Matrix P. The triplet (S, G, P) is kept secret as
the private key [5] [14].

Encrypting a message m using (F, t) is very simple. After
encoding the message M as a binary string of length Kk, one
computes the code vector ¢’ = mF. One gets encrypted
message by adding a binary random error vector z to the code
vector C'. Decryption simply detects and corrects the error at
the receiver end. Therefore, the ciphertext C is as follows:

c=mF+z=c"'+z

where F is Disguised Generator Matrix and z is an n-bit
random binary error vector having weight exactly t.

Decrypting can simply be achieved by using the code's
decoding ability. First of all, one has to clear the effect of the
random permutation matrix from the ciphertext, hence
computes ¢ = cP 1 where P ! is the inverse of the
permutation matrix P. Notice that ¢'" is now a code vector
with some error. Since error has only t components, (n, K)-
linear code C can correct these errors. Patterson’s Algorithm
[9] using the row reduction method in [6] can be used to
decode the code vector m" from c''. Finally, once the effect
of S is clear out from m"' by

m=m"S-!
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one would get back the original message m.

Being mainly simple matrix operations, encryption and
decryption in McEliece algorithm can be performed very fast
[15]. However, the public and private keys are quite large
and this is the main reason why McEliece algorithm never
flourished to the same extend as RSA or ECC do. There are
recent studies targeting to improve McEliece cryptosystem.
Misoczki et. al. [16] introduced MDPC-McEliece scheme
addressing the long key size problem. Later, Heyse et. al.
[17] proposed fast hardware architectures for MDPC-
McEliece. Various other more efficient code-based signature
schemes [18][19][20] are proposed but still more research is
required.

3. MCELIECE PERFORMANCE ON
RASPBERRY PI 3

In this section, the performance analysis of the Raspberry Pi
3 for McEliece Cryptosystem has been evaluated. The
performance parameters include Execution time, Energy
consumption, memory utilization. These are evaluated
separately for encryption and decryption with their
dependencies with plaintext and ciphertext sizes based on the
Goppa parameters: degree of defining polynomial and the
power of prime that generates the Galois Filed [5].

Figure 1: Raspberry Pi 3

Raspberry Pi 3 shown in Figure 1, is a mini computer with
the given specifications in Table 1. Raspberry Pi 3 has inbuilt
Raspbian Operating system and is particularly used as budget
desktop, media center, Robots, phones, tablets, laptops.

McEliece encryption and the decryption functions are
implemented on Raspberry Pi 3 using a python interpreter
software called SAGEMATH [10]. The inbuilt Python
modules integrated with SAGE, helps in calculations
involving large matrices. The referenced source code [11] for
implementing the algorithm were optimized in a way to find
out the parameters like energy consumption, memory
utilization, CPU utilization and execution time.
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Table 1: Raspberry Pi specification

Device Feature | Specification

SoC Broadcom BCM2837

CPU 4xARMCortex-A53, 1.2GHz

RAM 1GB LPDDR2 (900 MHz)

Networkin 10/100 Ethernet, 2.4GHz
ctworking 802.11n wireless

Power supply Micro USB power Input

With the encryption defined as: c=mF +z=c'+z

¢ = Ciphertext

m = Plaintext message

F = Public key

z = The binary random vector

In here, by adjusting the values the plaintext size and public
key size, first we compute the implementation parameters for
the memory consumption, CPU utilization, execution time
and power consumption of the Raspberry Pi 3. The major
constrain that determines the performance of McEliece
cryptosystem, K >= n — gt should be satisfied for successful
encryption and decryption, where

k = Length of message

n = Length of Ciphertext
g = Power of prime

t = Degree of polynomial

Solving the following equations gives the dependencies of
the performance parameters with the plaintext and public key
sizes.
ki = ka.
N1-pit = N2-pat2

This also gives us the instances of Goppa parameters (g, t)
which helps in finding the dependencies of performance
parameters with plaintext and ciphertext sizes. By executing
the script in Figure 2, we could figure out that, at certain
values of (, t) where the plaintext would be a constant with
varying public key sizes, and similarly the public key would
be a constant with varying plaintext sizes which directly
shows the dependency.

Table 2 shows the variations of degree polynomials, power
of prime with the size of plaintext bits by keeping public key
size at a constant at 512Bytes. Observe the interesting fact
that size of ciphertext gets smaller if plaintext sizes are
increase increased once public key is fixed to constant
512bytes.
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Table 2: Goppa parameters for fixed public key size

Prime . Plaintext | Ciphertext Put? key
Polynomial . . size
power degree (1) size (k- S1z§ (n- (n*k)
(o) bits) bits) Bytes
10 102 4 1024 512
9 56 8 512 512
8 30 16 256 512
Whereas Table 3 shows the variations of degree

polynomials(t), power of prime (q) with the size of public
key bytes (nk), by keeping plaintext size (k) at a constant of
16 Bits. Here one could analyze that for a constant plaintext
size of 16bits, we could see different variations of public key.
This can be considered as an encryption of 16bits blocks of
plaintext message forms a 256bits ciphertext using a 512
Bytes key.

Table 3: Goppa parameters for fixed pub key size

Prime . Plaintext | Ciphertext Put? key
Polynomial . . size
power degree (1) size (k- SIZ? (n- (%K)
(@ bits) bits) Bytes
6 8 16 1024 128
7 16 16 512 256
8 30 16 256 512

Table 2 and Table 3 show the basis of calculating the
performance parameters in our analysis.

3.1.EXECUTION TIME

The execution time is one of the major performance
parameter that determines the whole performance of the
McEliece algorithm. Here the execution time taken for
encryption and decryption has been evaluated by varying the
plaintext sizes (k) and random error vector () by keeping the
public key (nk) a constant of 512 Bytes and the graph being
plotted in Figure 3. From the plot one could see that the
execution time gets better with the increment of plaintext
size for a constant public key size. Even though it looks
contradictory with the classic concept that time should get
increase with the size of message bits, the constrain that
discussed above (kK >= n - qt) forces the time to get
decremented according to plaintext size. By analyzing the
Table 2 and Table 3, we could verify the reason behind the
longer execution time for encryption and decryption. The
Goppa parameter, degree of the polynomial (t) is 102 even
for a small plaintext size of 4 bits which leads to a high
execution time. As the plaintext size gets incremented for a
constant key 512 Bytes, the degree of polynomial (t) gets
smaller which again underlines the fact for a better execution
time.
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def calc_k(qg, t)
return 2**q - g*t

def valid_t(q, k):
if (pow(2, q) - k) % q == @:
return True
else:
return False

def calc_t(q, k):
return (pow(2, q) - k) // q

def eq2(ql, g2, t1, t2):
if pow(2, gql) - pow(2, g2) == gql*tl - gq2*t2:
return True
else:
return False

k_val_dict = dict()

for g in range(5,11):
for k in range(4, 1025):
if valid_t(q, k):
#tprint ("q: %d, k: %d" % ( q, k))
t= calc_t(q, k)
if t > e:
if k not in k_val_dict:
k_val_dict[k] = [(q, t)]
else:
k_val_dict[k].append((qg, t))

for k in k_val_dict:
if len(k_val_dict[k]) > 1:
print (k,":", k_val_dict[k]
Figure 2: Script for finding the parameters

Figure 4 shows variation of execution taken for encryption

and decryption separately in accordance with the variation of

public key in bytes for chosen binary random error vector (€)
sizes by keeping plaintext size a constant at 16Bits.

Execution Time Vs Plaintext
Public key = 512Bytes
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Figure 3: Execution Time vs Plaintext
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Execution Time Vs Public Key
Plaintext size = 16Bits

1.2
o
:",,i 1
)
E %
= 0.6
C
2 0.4
3 0.2
q) .
s , il N
128 (e=n 256 (e=n 512 (e=n
= 64bits) = 128bits) = 256bits)
M Encryption 0.14 0.18 0.2
M Decryption 0.18 0.35 0.97

Public key size (Bytes)

Figure 4: Execution Time vs Public key size (Plaintext = 16bits)

McEliece execution time gets better if plaintext size is
increased for a fixed public key size. Figure 3 itself shows
that one could have a faster encryption and decryption for
16bits plaintext when compared with 4bits plaintext with a
fixed 512 Byte public key. This reveals a new way for
encrypting large files since fixed block size with a fixed
public key yields a faster encryption and decryption. More
options of the McEliece parameters (n, k, @, t) can be
obtained from Niebuhr et. al. [13].

3.2.ENERGY CONSUMPTION

One of the major criteria that determines the performance
evaluation of McEliece cryptosystem on a device like
Raspberry Pi is energy consumption. The energy
consumption can be calculated using the relation

E=1*N*z*Vcc [12]

where E = Energy in joule
Vcc = Supply Voltage
| = Current in Ampere
N = Number of Clock cycles
7= Clock period
N * 7= Execution time

Note that Raspberry Pi 3 needs Vcc = 5.1 volts and | = 0.7
A. The overall energy consumption for encryption and
decryption has been evaluated in accordance with the
variations of plaintext sizes for a constant public key size and
by varying public key sizes for a constant plaintext size.
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Energy Consumption Vs Plaintext (Pubkey
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Figure 5: Energy Consumption vs Plaintext size (Pub key =
512Bytes)

Figure 5 shows the evaluation of energy consumption with
this new hypothesis. Like in execution time, we could see a
decrease in energy consumption for a fixed public key of
512Bytes while plaintext size is increased. Similarly, Figure
6 shows the energy consumed by a Raspberry Pi while
encrypting and decrypting a message with the variation in
public key size and keeping the size of plaintext a constant
value of 16 Bits.
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Figure 6: Energy Consumption vs Public key size

Notice that Figure 6 shows how the energy consumption
keeps on increasing in accordance with the public key size
for constant plaintext size of 16bits. This is similar to what is
shown in Figure 3 and Figure 4; the same Goppa parameters
degree of the polynomial (t) and power of prime (Q)
determines the energy consumption parameter. This leads to
high energy consumption for 4 bits plaintext size with 512
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Bytes key and conversely a less energy consumption for a
16bits plaintext size for 128Byte key.

3.3. MEMORY UTILIZATION

The memory utilization of the device while on encryption
and decryption can be calculated using the below given
equations respectively.

c=mF+z and cP!=[mF +z] P!

Where m denotes the plaintext message matrix with
dimension 1 X k, F denotes the Disguised matrix with a
dimension n X k and z denotes the random error vector with
dimension 1 X n.

Recall that F = G S P where G, the generator matrix, S the
scramble matrix and P the permutation matrix. The generator
matrix [G] is derived from the parity check matrix [H]
composed of three matrices [X], [Y] and [Z]. Theoretically,
we could calculate the total number of bits involved in
encryption and decryption. Therefore, the memory utilized
would be the addition of the dimensions of the matrices
involved.

Matrix Dimension
X t Xt.
Y t Xn.
Y nxn.
G k X n.
S k X k.
P nxn.
e 1Xn.

Therefore, the memory utilized in bits for encryption is
2+ nt+n?+nk + k2 + n? + n = n(1+k+t+2n) +2 (1)

In the case of decryption, the bits involved would be the sum
of dimensions of above-mentioned matrices in addition with
dimension of inverses of the permutation matrix P, Generator
matrix G and scramble matrix S are being calculated.
Therefore, number of bits used for decryption are,

N(1+k+t+2n) +t2+ n*n + nk + k2
= n(3n+2k+t+1) + t2 +k? )

Equations (1) and (2) under the constrain [K >=n —m * t],
can be used to find the dependency of memory consumption
for encryption and decryption separately, with the plaintext
and public key size. The graph shown in Figure 7 provides
the various instances obtained regrading memory utilization
for encryption and decryption separately, by varying
plaintext size and by keeping the public key constant at 512
Bytes.
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To give an example: let the memory utilized for Encryption
and Decryption based on Goppa parameters be,

g (Power of prime) = 10

t (Degree of Polynomial) = 102
plaintext size (k) = 4bits
Ciphertext size (n) = 1024bits
Pub key size = 512 Bytes

For encryption, substitute the values in Equation (1) gives

Memory cost = N(1+k+t+2n) +t?
= 277.1405Kbytes

while for decryption, substitute the values in Equation (2)

Memory cost = N(3n+2k+t+1) + t2 +k?
=408.7265KBytes

Memory Consumption Vs Plaintext size
Public key = 512Bytes
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W Encryption | 277.1405 70.088 18.0005
M Decryption| 408.7265 103.376 26.7365

Plaintext size (Bits)

Figure 7: Memory Consumption vs Plaintext sizes

From Figure 7, we could easily figure out that the memory
utilization gets decreased as the plaintext size increases.
Even for the low value of plaintext size (k), the degree of the
Goppa polynomial (t) is quite high for maintaining a constant
public key size, which in leads in the high memory
utilization. The graph shown in Figure 8, provides the
various instances obtained regrading memory utilization on
encryption and decryption by varying plaintext size with
keeping the public key constant at 512 Bytes
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Memory Utilization Vs Public key size
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Figure 8: Memory Consumption vs Public key sizes

In Figure 8, one could see that the memory utilization is
directly proportional with the size of the public key size. By
running McEliece algorithm in Raspberry Pi 3, we verify that
the memory consumed by the device matches with what is
computed theoretically.

3.4.CPU UTILIZATION

One major parameter which determines the performance of
Raspberry Pi is CPU utilization. It has been evaluated for
encryption and decryption together. As we did with other
performance analysis, CPU utilization also been done by
varying the plaintext sizes with constant public key size and
by varying the public key for constant plaintext size.

CPU Utilization Vs Plaintext
Public key size = 512Bytes
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Figure 9: CPU Utilization vs Plaintext
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In Figure 9, the CPU utilization being analyzed for
encryption and for decryption together. We are getting a
utilization even for various values of plaintext sizes with
constant public key size of 512bytes. As the parameters
degree of Goppa polynomial (t), and prime power (q)
determines the utilization by maintaining a stable value of
public key size(512Bytes), which enforces the utilization to
be stable. In other words, even for a low range value for
degree of polynomial (t) = 30 and for a high range value of t
= 100, the CPU is being utilized at its maximum range of
100%. Graph shown in Figure 10, evaluates the variation of
CPU utilization for encryption and decryption together, with
variation of public key size and by keeping the plaintext size
a constant equal to 16Bits. Here the case is bit different as
that of the previous one, were the CPU utilization varies a bit
and it ranges from 82% to 100%

CPU Utilization Vs Public Key Size
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Figure 10: CPU Utilization vs public key size

4. CONCLUSION

In this study, we evaluated the performance analysis of
McEliece Cryptosystem in Raspberry Pi 3. The performance
parameters include execution time, energy consumption,
CPU and memory utilization. The parameters are evaluated
for and encryption and decryption separately and with their
corresponding dependencies with plaintext and public key
sizes. The Goppa parameters like degree of the polynomial
(t), power of prime (q), set the major constrain in the
variations of the performance of this algorithm. These
performance parameters get decremented according to the
increase in plaintext size for a constant public key, at the
same time these parameters get incremented with increase in
public key size for a constant plaintext size. The results
obtained regarding the variations of performance parameters
with plaintext and public key sizes were really exciting. On
this basis, we can say that it could be a good candidate for
big block size message encryptions for a fixed public key.
But the major thing that stand against the proper functioning
of this algorithm on a device like Raspberry Pi was its CPU
power, which took very high execution time even for low
ranges of plaintext messages. Taking these facts into account
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we could conclude that it can open a new platform for more
secure way of data exchange in the era of quantum
computing.
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