

Abstract-With more and more people becoming Internet

users there have been great increase in using Web in all areas
of life, including communication, education and shopping. And
as a result of these changes the security concerns have also
grown. The web application vulnerability scanners help reduce
these security concerns in Web-based applications. In today's
market a large number of web application-scanning tools are
available, e.g. QualysGuard WAS, Acunetix, Hailstorm,
Appscan, WebInspect, etc. Although these tools are available in
the market but question becomes how efficient they are to
address security concerns in WEB applications? To compare
vulnerability detection rate of different scanners, it is
important to have an independent test suite. This paper
describes a web application, which is intended to be used to
evaluate the efficiency of QualysGuard WAS and Acunetix web
application vulnerability scanners. The application implements
real life scenarios for imitation of OWASPs Top Ten Security
Risks that are presented in the wild. For several vulnerabilities
presented in this application, we also explain defense measures,
which secure the application significantly. The results of web
application evaluation identifies the most challenging
vulnerabilities for scanner to detect, and compare the
effectiveness of scanners as penetration testing tools for
exploiting OWASP Top Ten vulnerabilities. The assessment
results can suggest areas that require further research to
improve scanner’s detection rate.

Index Terms—Black box testing, web security scanners, web
security, web security vulnerabilities.

I. INTRODUCTION
In today’s world many of the most dangerous security

risks are based on vulnerabilities in web applications. ISO
27005 defines vulnerability as “a weakness of an asset or
group of assets that can be exploited by one or more threats
where an asset is anything that can has value to the
organization, its business operations and their continuity,
including information resources that support the
organization's mission” [1]. According to National
Vulnerability Database (NVD) [2] the number of
vulnerabilities has become lower since 2009, which means
that security measures has been incremented over last year.
This is shown in Figure1.

In spite of this fact, percentage likelihood that at least one
vulnerability will appear in a website remains very high.

During 2010 every day almost every websites were exposed
to at least one of high, critical, or urgent severity
vulnerability, 64% of which had at least one Information
Leakage vulnerability [2]. These web application
vulnerabilities may cause attacks to exploit weaknesses on
any tier or layer of web-based applications.

Fig. 1. Vulnerability distribution over years (2008-2011)

Most applications deployed on the Web implement a 3-

tier architecture: presentation tier, business tier and data tier.
Presentation tier is a web browser and dynamic web pages
containing various types of markup language; business tier is
a web application server; data tier is a database server. All
tiers communicate with each other using strings to process
input data. Web Application Server processes the inputs it
receives from the clients and interacts with the database as
shown in Figure 2.

Fig. 2. The interaction between Client Tier (Web Client), Application

Tier (Web Application) and Database Tier (Database Server)

Because web application server must validate and/or
modify incoming strings before processing them or passing
to database tier, in this paper we discuss input validation
from client tier problem along with other most popular
security flaws. Client Tier technologies include HyperText
Markup Language (HTML) [53], Extensible Markup
Language (XML) [57], JavaServer Pages (JSP) [58],
JavaScript [55], and web applications continue to become

Implementation of a Web Application for
Evaluation of Web Application Security

Scanners
L. Ertaul, Y.Martirosyan,

Mathematics and Computer Science, CSU East Bay, Hayward, CA, USA

more feature-rich and more dynamic, in particular with the
advent of Asynchronous JavaScript and XML (AJAX) client
tier technology. In the Web Application used to evaluate
web application scanners we implement modern features
such as JavaScript and AJAX to present more complex tasks
for security scanners [3]. Another challenge that can result in
limitations for security scanners presented in the Web
Application is the difference of vulnerabilities within one
class in terms of types of attacks vector. For example,
exploiting Persistent XSS is more complex task than Non-
Persistent XSS vulnerability [26]. Our goal is to assess the
strengths and limitations of QualysGuard WAS [47] and
Acunetix [56] tools and to report the test results. In the first
part of our experiments we create a tested, the Web
Application (MusicStore) that contains The Open Web
Application Security Project (OWASP) Top Ten [4] most
critical security risks. In the second phase we test
QualysGuard WAS and Acunetix security scanners for
vulnerability detection.

 In Section II we present OWASP Top Ten web
application security risks of 2010. Section III describes the
technical characteristics, functionality and vulnerabilities of
Web Application, which is implemented as a test suit for
assessment of scanners. We explain defense mechanisms
against web application attacks in Section IV. Section V
contains web application assessment results. In Section VI
we present conclusions.

II. OWASP WEB APPLICATION SECURITY RISKS
The OWASP security community has released its annual

report in 2010 capturing the top risks in web application
development as a combination of the probability of an event
and its consequence. Following is the list of the top risks in
web applications:

1. Injection
2. Cross-Site Scripting (XSS)
3. Broken Authentication and Session Management
4. Insecure Direct Object References
5. Cross-Site Request Forgery (CSRF)
6. Security Misconfiguration
7. Insecure Cryptographic Storage
8. Failure to Restrict URL Access
9. Insufficient Transport Layer Protection
10. Unvalidated Redirect and Forward

In web application described in this paper, we implement
vulnerabilities 1 to 10, presenting them as real-life scenarios.

III. WEB APPLICATION (MUSICSTORE)
There are several existing web applications to demonstrate

common web application vulnerabilities such as “HacMe”
series [41]. Those applications are well known by users and
scanner developers. These applications may be used by
scanner developers to optimize their performance. Other
concern is the unavailability of the source code to estimate
the rate of positive and false negative results of security
scanner’s findings. In addition to that these applications do
not implement all the vulnerabilities from OWASP Top Ten
report. Another well-known application is “WebGoat”[42]

which is very complex web application. It is mainly used in
educational purposes and not all of its test cases replicate
real-life scenarios. Because of these drawbacks of available
applications, there is a need to have an independent Web
Application, which has real life scenarios and implements
OWASP Top Ten vulnerabilities, to be used to test these
web scanners. The Web Application (MusicStore) we
present in this paper is designed to realistically simulate the
steps a regular user goes through while using a dynamic web
page and replicates the behavior of online store. The
availability of source code and the control over server results
in better evaluation of web application scanners.

Now let’s have a look at functionality of the application.
First a user creates an account, providing his/her personal
data, including credit card number and shipping address.
Second he/she selects the product and stores his selection in
personal shopping cart. Later when the user decides to make
the purchase an invoice is placed in queue for further
processing. In addition to that the user can add reviews to
products and read other customers’ opinions, check partners’
newsletters and subscribe to mailing list. Figure 3 illustrates
the interface of the web application.

Fig. 3. Web Application User Interface

The MusicStore Web Application is Java [50] based

application, which is deployed on Tomcat Server [51]. It
uses database on Oracle database management server [52] to
store the data for the web site in its tables. Apache is a web
server with Tomcat servlet/JSP engine. The application uses
JSPs to present the user interface. It also uses HTML, CSS
[54], JavaScript, and AJAX technologies. The presence of
such technologies as AJAX and JavaScript in our web
application gives additional opportunities. JavaScript is
widely used in modern web applications and it is important
to analyze the behavior of tools and their ability to parse
JavaScript code.

The web application was developed based on OWASP
Top Ten report of 2010. In this section we go over the
characteristic vulnerabilities presented in the Web
Application. The full list of the flaws designed in the project
is available in Vulnerability Report [43]. As seen in the
report we implement fifty-five variations of OWASP Top
Ten Security Risks (see Table1 ‘Total’ column).

A. First Order SQL Injection: recoverPassword function
is intended to recover user’s password based on her answer
to security question.

String query = "SELECT Password FROM v_UserPass WHERE
(v_UserPass.EmailAddress = '" + emailAddress + "' AND
v_UserPass.Answer = '" + answer + "') ";

Payload:
emailAddress=test%40test.com%27%29--&answer=anycolor

In recoverPassword function concatenation is used to
create dynamic SQL query. Attacker can easily impersonate
site user and recover victims password by commenting out
the part of the query using ‘--’ single-line comment indicator
[6].

B. Blind SQL Injection: updatePassword function is
intended to update user’s password based on her
emailAddress.

String query = "UPDATE v_UserPass SET Password = ?, Answer =
'"+ answer+ "' WHERE EmailAddress = '"+ emailAddress + "'";

Manipulating ‘answer’ query parameter attacker can
verify if email address he is interested in is stored in
application database.

True payload:
password=test11&answer=red%27+WHERE+EmailAddress%3D%28%27e
xistedEmail%40test.com%27%29--

If there is user with existedEmail@test.com email address
in application database then query will be executed.

False payload:
password=test11&answer=red%27+WHERE+EmailAddress%3D%28%27n
otExistedEmail%40test.com%27%29--

If there is not any user with notExistedEmail@test.com
email address in application database then query will fail.

C. SQL Injection Using Database constant: insertReview
function adds customer product reviews database in online
store.

String query = "INSERT INTO v_Reviews (Title, Message) VALUES
(‘"+title + "', '"+ message+ "')";

Payload:
title=%27%7C%7CSYSDATE%7C%7C%27&message=%27%7C%7CSYS
DATE%7C%7C%27
SYSDATE is Oracle function that returns date and time on a
local database. This way attacker receives additional
information about SQL Server.

D. Non-Persistent XSS: In this JSP Expression Language
and Java example user registration information is stored in
online store database after creditCardNumber parameter is
validated on server side. No input inspection for firstName
parameter is performed.
<form action="registrationServlet" method=post>
 First Name <input type="text" name="firstName”
 value="${newUser.firstName}">
 Card number <input type="text" name="creditCardNumber">
<input type="button" value="Continue">
</form>
Payload:
firstName=John"'><script>alert ("firstName parameter is
vulnerable")</script>&creditCardNumber=1234
If credit card number is incorrect firstName value be
reflected on web page.

E. Persistent XSS: insertReview function adds customer
product reviews database in online store.

String query = "INSERT INTO v_Reviews (Message) VALUES (“'"+
message+ “"‘)";

Payload:
message=message+%3Cscript%3Ealert%280%29%3C%2Fscript%3E&SU
BMIT=Submit

F. DOM Based XSS: web page uses firstName parameter
in URL to greet the user. Web browser parses this HTML,
which is received from server, into DOM. Parser executes
the JavaScript code and as a result the XSS vulnerability is
exploited.
<div id="greeting">

Hello
<SCRIPT>
var url = window.location.href;
var pos = url.indexOf("firstName=") + 10;
var firstName_string = url.substring(pos);
document.write(unescape(firstName_string));
</SCRIPT>
</div>
Payload in URL:
http://www.vulnerablewebapp.com/join_email_list.jsp?firstName=%3Cscri
pt%3Ealert%28%22DOM%20XSS%22%29%3C/script%3E

G. Broken Authentication: web application uses password
recovery function, when you need to answer the security
question. Using social engineering attacker can guess the
country. Then using brute force dictionary method attacker
can find the city and obtain victim’s credentials [7], [8], [9],
[10].

Question: Where were you born?
Payload is list of cities.
H. Insecure Direct Object Reference: web application

receives reference to a file as form parameter ‘letter’, reads
and displays the text. An attacker manipulates ‘letter’
parameter to access other objects.
Form parameter: letter=SomePartner.html&SUBMIT=View+Letter
Java code:
File f = new File(path + "/" + request.getParameter("letter"));
String text = getFileText (new BufferedReader (new FileReader (f)), false);
Payload: ../../../../../../../apps/java/apache-tomcat-6.0.16/conf/server.xmls

I. CSRF: the victim is authenticated at vulnerable online
store. Attacker has placed malicious CSRF code on a web
site. The browser will submit the request to vulnerable
online store.

Malicious CSRF code:
<img src=
"http://www.vulnerablewebapp.com/updateUserPassword?password=false
pass" width="1" height="1" border="0">

J. Security Misconfiguration: Web application server is
vulnerable to slow HTTP headers DDoS attack. Using
slowhttptest [11] tool attacker can get denial of service by
slowing down requests.

K. Failure to Restrict URL: web application protects all
data under “/user” directory. After user is authenticated web
application makes possible to access /userAccess.jsp link.
But it is not under /user directory and attacker can guess that
hidden link and take advantage of it.
<% if (request.isUserInRole("user")) {%>
User
Only

L. Insufficient Transport Layer Protection: any data under
“/user” directory should be protected using SSL.

https://www.vulnerablewebapp.com/user
M. Unvaidated Redirect and Forward: Redirect and

Forward functionality is very common in many web
applications. But insecure implementation of it can result in
tricking the user by an attacked into clicking the link that
will navigate to unsafe destination. This is an example of
Java code that demonstrates implementation of redirect
function where site parameter value is the URL.
String site = request.getParameter("site");
if(site!=null && site!=""){
response.setStatus(response.SC_MOVED_TEMPORARILY);
response.setHeader("Location", site); }

Payload: ="http://www.vulnerablewebapp.com
/partners/displayParnerLetter?site=http://www.attackerDestination.com
With all these threats widely available in web it is important

to secure web application against them. In the next section
we explain defense mechanisms and we show the
implementation of several most important techniques in our
web application.

IV. DEFENSE MECHANISMS
Preventing vulnerabilities in applications extremely

important due to high number of attacks (see Fig 1). In this
section we describe several defense techniques against web
application attacks used in our application.

� SQL Injection and Cross-Site Scripting (XSS) Defense.
Server side defense using Prepared Statement [12] is the
most effective way to protect from SQL Injection, because it
ensures that intent of query is not changed. It is very
important to lockdown database server and to follow the
Principle of Least Privilege [13], [14]. Modern web
applications also rely heavily on caching and database
schema design to improve performance [40].

For prevention code injection attacks, including SQL
Injection and XSS all user data should be validated. Input
validation can be performed client side using JavaScript, but
from security prospective it is not effective, because it
doesn’t provide protection for server-side code.
JavaScript Example:

 var emailexp = /^([A-Za-z0-9_\-\.])+\@([A-Za-z0-9_\-\.])+\.([A-Za-
z]{2,4})$/

if (!isValid(emailexp,form.emailAddress.value)){
return false}
Despite rule that input must be validated server-side

sometimes validation should be performed client-side
[15][16]. Web frameworks and filters that offer automate
sanitization to prevent XSS in web applications are gaining
popularity, because manual implementation of input
sanitization in web application is prone to errors [17-25].
Unfortunately input filters can be circumvented with various
attack vectors [26] [27].

� Broken Authentication Defense, Session Management
and Transport Layer Protection. Authentication and session
security is critically important because compromised
credentials leads to impersonation and loss of
confidentiality. To protect user’s session ID strong efforts
should be made to avoid XSS flaws as described in Injection
Defense Section. Authentication key points are Password
Strength and Password Use, including number of possible
attempts and storage; and Password Recovery mechanism
[28].

Example:
<security-constraint>
 <web-resource-collection>
 <web-resource-name>User</web-resource-name>
 <url-pattern>/user/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee> CONFIDENTIAL

 </transport-guarantee>
 </user-data-constraint>
 </security-constraint>
Authentication relies on secure communication, so it is

important to maintain Transport Layer Protection [29].

In this example data under /user/ directory will be
transferred using secure connection. Also session cookie
used to identify authenticated user should contain the
"secure" or “HTTPOnly” attribute.

� Insecure Direct Object Reference Defense. This attack
represents a serious threat to parameter-driven site if
parameter is modified to point to a local file on the Web
server. It is a good practice to use a reference map to prevent
parameter manipulation.

� Cross-Site Request Forgery Defense. Main defense
technique is using authorization token, generated web
application on server side. The Anti-CSRF token should be a
randomly generated value, specific to the user’s current
session [29-32].

� Security Misconfiguration Defense. Maintaining
security settings of the application, frameworks, application
server, web server, database server, and platform is very
complex problem. Web servers are frequent target of attacks
so trying to secure web servers the following aspects should
be taken into account: Configuration, Web content and
server-side applications, Operating System, Documentation
[33].
Example:

HTTP server is subject to Slow type HTTP Attack [34].
There is number of steps to protect against this attack [35]. The

RequestReadTimeout directive value should be set to limit the time a client
may take to send the request [36].

� Insecure Cryptographic Storage. Sensitive data should
not be displayed in clear form. The data should be stored
encrypted with strong encryption algorithms, such as AES
[44], RSA [45], and SHA-256 [46], [37] in database and
decrypt it on server side upon request, or store hash of the
data.

� Failure to Restrict URL access. Hidden pages are
difficult to find, but sometimes it is possible to guess the
URL, which is not intended for presence to unauthorized
users. It is important to use an effective and trusted access
control mechanism [38] and access control matrix that is
carefully planned [39].

� Unvalidated Redirect and Forward. As for many
previous discussed attacks parameter value validation should
be performed before redirection. It can be done by ensure
that the URL parameter is indeed a valid URL.

With all described flaws and defense mechanisms we
need to find out whether the Web Application presented in
this paper is useful to identify weak and strong points of a
security scanner. In next section we examine the
experimental results of running web application
vulnerability scanners against our MusicStore web
application.

V. EVALUATION OF WEB APPLICATION VULNERABILITY
SCANNERS

Two web application vulnerability scanners, QualysGuard
WAS (scanner Q) and Acunetix (scanner A), were tested
using our MusicStore web application in order to find out
whether those tools are actually successful at finding
existent vulnerabilities. The results discuss the challenging
vulnerabilities to detect, the possibility of false positive
reports and the variation of vulnerabilities detection between

different types. Both scanners support identification of web
application vulnerabilities in the OWASP Top Ten
approach, including dynamic and static search lists, links
crawling, brute force and authentication.

Before the testing procedure Web Application is restored
to original state. The setup consist of following steps:

1) Count and classify vulnerabilities in web application
before the initial test.

2) The database server and web server are put in an initial
state. This state includes seven products, two regular users
and one administrator user in database and seven images for
each product on web server.

3) Run web application scanner in initial mode.
4) Count the vulnerabilities found by web application

scanner and compare to actual vulnerabilities report in step
1. The details of analysis presented next in this section.

5) Count False Positive/Maybe/Duplicate results.

The results of running Scanner A and Scanner Q against

web application are shown in Table 1. The Table contains
the following data:
§ First column represents the vulnerabilities presented in

the test suit. (Top 10 OWASP Vulnerabilities)
§ Second column shows the different types of a

vulnerability presented in first column.
§ Third column contains the total number of

vulnerabilities of each type existing in the web
application MusicStore.

§ Forth column contains the number of vulnerabilities
detected by scanners.

§ Fifth column is named False Positive (FP) results,
which are reported by scanners but are not actually
presented in the Web Application. The list included the
findings of vulnerabilities marked as ‘possible’, which
we will consider as ‘maybe’; or vulnerabilities, which
were reported, previously in the same type but with
different description.

§ The last column represents False Negative (FN) results,
those are the vulnerabilities missed by the scanners.

Full report of running QualysGuard WAS and Acunetix
against Web Application can be found in QualysGuard WAS
Evaluation [48] and Acunetix Evaluation [59].

The Table 1 reports the vulnerabilities that were detected
by web application scanners. As seen from the Table 1 both
tools missed some weaknesses. Here we present the analysis
of why the scanners missed certain vulnerabilities.

1) SQL Injection. Scanner A was able to discover all First
Order SQL Injection vulnerabilities. But both scanners failed
to find second order SQL Injection vulnerabilities, which are
not executed immediately. The result of the injection is
displayed on a page that should be navigated by user after
the payload was submitted. Scanners fails to follow this
logic thus interprets it as a negative response.

2) Cross-Site Scripting. Scanner Q discovered all Non-
Persistent XSS vulnerabilities. Scanner A’s results were very
impressive too, but as a group most Persistent multi-step
XSS and DOM XSS vulnerabilities were missed by both
scanners.

TABLE 1
RESULTS OF WEB APPLICATION VULNARABILITY SCANNERS

ASSESSMENT
Vulnerabilities Vuln.

Type
Total Detected FP FN

 A Q A Q A Q
SQL Injection First

Order
2 0 2 1 0 2 0

Second
Order

4 0 0 0 0 4 4

XSS Non-
Persistent
XSS

10 9 10 36 10 1 0

Persistent
XSS

4 1 3 1 3 3 1

DOM
XSS

4 3 1 0 0 1 3

Broken
Authentication

 2 1 1 0 0 1 1

Insecure
Direct Obj.
Ref.

 1 1 1 0 0 0 0

CSRF 11 0 4 0 8 11 7
Security
Misconfigurati
on

Password
sent via
GET
method

2 0 0 0 0 2 2

Web
Server
DDoS

2 0 2 0 2 2 0

Sensitive
Data
display

1 0 0 0 0 1 1

Insecure
Cryptographic
Storage

 7 2 4 0 0 5 3

Failure to
Restrict URL
Access

 1 0 0 0 0 1 1

Insufficient
Transport
Layer
Protection

Insecure
session
cookie

2 2 2 0 0 0 0

Insecure
Login (no
SSL)

1 1 1 0 0 0 0

Unvalidated
Redirect and
Forward

 1 0 1 0 0 1 0

 55
3) Broken Authentication and Session Management. In

our web application we present two vulnerabilities of this
type. The first one is vulnerability with weak password
recovery model. The weakness is easily exploited by
guessing. So scanners were not able to find the flow, which
is not surprising. Both scanners easily discovered the second
vulnerability because it had plain brute force attack
possibility.

4) Insecure Direct Object Reference. Both security
scanners were able to detect this type of vulnerability.

5) CSRF. Scanner Q found only 4 CSRF vulnerable links.
Scanner A didn’t show any results for this type of
vulnerability. We relate this to the fact that during the
information gathering phase the link crawling did not
enumerate all the reachable pages. For those links presented
in crawling report CSRF vulnerability was detected. For full

information on links presented in our web application see
Full Crawling Report [49].

6) Security Misconfiguration. The 2 vulnerabilities missed
by the tool Q in this type are based on insecure data handling
by web server, which is able to process requests sent by
GET method. Scanners missed this vulnerability because the
form with sensitive data was submitted by POST method
although it was possible to send the request by adding the
parameters in URL and process it as GET method. Scanner
A didn’t find any of the presented flows.

7) Insecure Cryptographic Storage. Both scanners
discovered all session flaws. Although Scanner Q tested the
possibility of sending credit card information securely, but it
missed the same type of vulnerability: secure processing
password and the answer to secret question. Those are
application specific vulnerability.

8) Failure to Restrict URL Access. Both scanners did not
detect the hidden link. The link is accessible by registered
user only. Another way to reach the hidden link is force
browsing which has failed for scanner specific testing.

9) Insufficient Transport Layer Protection. The scanners
were able to detect all insecure cookie and session
processing vulnerabilities.

10) Unvalidated Redirect and Forward. Scanner Q
detected this vulnerability, while Scanner A didn’t report
any findings.
In Figure4 and Figure 5 we present the following details on
our findings:
• False Negative Rate (FN)- The rate is calculated as the

number of FN vulnerabilities of each type over total
number of vulnerabilities of each type.

• False Positive/Duplicate/Maybe Rate (FP) – percentage
of vulnerabilities reported by scanner, but not the actual
weaknesses. The rate is calculated as the number of FP
vulnerabilities of each type over total number of
vulnerabilities of each type.

The interesting result for Scanner Q was found for CSRF
vulnerability type as shown in Fig. 4. False Positive rate is
higher than false Negative. This means that despite the fact
that scanner is very attentive to this type of weaknesses and
suspected many web pages to be vulnerable it wasn’t able to
reach all possible web pages to try there the attacks as a
result of complex multi-step application design.
Fig. 5 shows that Scanner A has very high FP results for
XSS vulnerability. Almost all FP reports were duplicates.

VI. CONCLUSION
We described OWASP Top 10 Security Risks

implemented in the independent web application, which was
designed and used as a testbed for evaluation of
effectiveness of QualysGuard WAS and Acunetix web
application vulnerability scanners. Each vulnerability type,
presented in the web application was implemented as
separate real life scenarios, including the popular coding
mistakes and possible defense mechanisms.
Web Application vulnerability scanners failed to crawl the
entire web application, which resulted in missing
vulnerabilities. The other challenge was the difficulty to

exploit stored and multi-step vulnerabilities. This also
resulted in high rate of False Negative results. False Positive
report was mostly the result of duplicates and ‘possible’
vulnerabilities. The tools showed very good results on
detecting straightforward vulnerabilities as Non-Persistent
XSS, Transport Layer Protection and Insecure Direct Object
Reference.
Our plans for future work include evaluation of another two
well-known web application vulnerabilities scanners using
MusicStore web application with a purpose to get more
extensive independent scanner evaluation report.

Fig. 4. QualysGuard. False Negative and False

Positive/Duplicate/Maybe.
V1- SQL Injection, V2-Cross-Site Scripting, V3-Broken Authentication,
V4-Insecure Direct Object Reference, V5-Cross-Site Request Forgery, V6-
Security Misconfiguration, V7-Insecure Cryptographic Storage, V8- Failure
to Restrict URL Access, V9- Insufficient Transport Layer Protection, V10-
Unvalidated Redirect and Forward.

Fig. 5. Acunetix. False Negative and False Positive/Duplicate/Maybe.

V1- SQL Injection, V2-Cross-Site Scripting, V3-Broken Authentication,
V4-Insecure Direct Object Reference, V5-Cross-Site Request Forgery, V6-
Security Misconfiguration, V7-Insecure Cryptographic Storage, V8- Failure
to Restrict URL Access, V9- Insufficient Transport Layer Protection, V10-
Unvalidated Redirect and Forward.

REFERENCES
[1] International Organization for Standardization and International

Electrotechnical Commission. ISO/IEC 27001:2005, Information
technology – security techniques – information security management
systems – requirements, 2005.

[2] National Vulnerability Database, http://nvd.nist.gov.
[3] Anthony T. Holdener III, “Ajax: The Definitive Guide Interactive

Applications for the Web”, O'Reilly Media, 2008.

[4] The OWASP Foundation, “OWASP Top Ten Web Application
Security Risks”,
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Projec
t, 2011.

[5] Oracle Learning Library. Defending Against SQL Injection Attacks,
http://apex.oracle.com/pls/apex/f?p=44785:1:4073230388602787::NO

[6] Oracle PL/SQL Tutorial.
http://www.java2s.com/Tutorial/Oracle/CatalogOracle.htm.

[7] THC Hydra, thc releases, thc-hydra v. 7.1, http://www.thc.org/thc-
hydra/, 2011.

[8] John the Ripper password cracker, http://www.openwall.com, 2011.
[9] B. -S. Huang. “Brutus Project Groups Technical Report”, Brutus

Project. http://www.hoobie.net/brutus/.
[10] Massimiliano Montoro, Cain & Abel, http://www.oxid.it/cain.html.
[11] slowhttptest. Application Layer DoS attack simulator.

http://code.google.com/p/slowhttptest, 2011.
[12] Java SE Technical Documentation. JDBC(TM) Database Access,

Using Prepared Statements,
http://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html, 2011.

[13] Jerome H. Saltzer and Michael D. Schroeder, The protection of
information in computer systems. Proceedings of the IEEE, 63(9):
1278-1308, 1975.

[14] Fred B. Schneider, Least Privilege and More. IEEE Security &
Privacy, pp. 55-59, September 2003.

[15] Matt Johansen and Kyle Osborn, “Hacking Google Chrome OS”.
Black Hat USA, Briefings and Trainings, August 2011

[16] Jeremiah Grossman, “Sometimes Input MUST be Validated Client-
Side”. WhiteHat Security. https://blog.whitehatsec.com/sometimes-
input-must-be-validated-client-side-o_o/, September 1, 2011.

[17] E. Athanasopoulos, V.Pappas, A. Krithinakis, S.Ligouras, E. P.
Markatos, “xJS: practical XSS prevention for web application
development”, Proceedings of the 2010 USENIX Conference on Web
Application Development, 2010.

[18] P. Bisht, V. Venkatakrishnan, “XSS-GUARD: precise dynamic
prevention of cross-site scripting attacks”, Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 23–43, 2008.

[19] W. Robertson, G. Vigna, “Static enforcement of web application
integrity through strong typing”, Proceedings of the 18th Conference
on USENIX Security Symposium, SSYM 2009. USENIX
Association, Berkeley (2009).

[20] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, D. Song, “A
symbolic execution framework for JavaScript”, Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP 2010. IEEE
Computer Society, Washington, DC, USA 2010.

[21] P. Saxena, D. Molnar, B. Livshits, “Scriptgard: Preventing script
injection attacks in legacy web applications with automatic
sanitization”, Tech. rep., Microsoft Research. September 2010.

[22] Zend Framework. Zend Filter.
http://framework.zend.com/manual/en/zend.filter.set.html.

[23] Yii Framework. Special Topics. Security.
http://www.yiiframework.com/doc/guide/1.1/en/, 2010.

[24] Template Toolkit.Manual. http://template-
toolkit.org/docs/manual/Filters, January 2012.

[25] P. Saxena, S. Hanna, P. Poosankam, D. Song, “FLAX: Systematic
discovery of client-side validation vulnerabilities in rich web
applications”, 17th Annual Network & Distributed System Security
Symposium NDSS, 2010.

[26] K. K. Mookhey, Nilesh Burghate, Detection of SQL Injection and
Cross-site Scripting Attacks, Symantec Connect Community, 02
November 2010.

[27] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D.
Song, “A Systematic Analysis of XSS Sanitization in Web
Application Frameworks”, University of California, Berkeley, 2011.

[28] C. Miller, “Password Recovery”.
http://fishbowl.pastiche.org/archives/docs/PasswordRecovery.pdf,
October 20 2002.

[29] K. Jaggi, “Securing Web Apps on Tomcat with SSL”. Sun Developer
Network, August 2006.

[30] Sun Microsystems. Mojarra Project. Mojarra JavaServerTM Faces
JSF 2.0, 2011.

[31] Apache Struts. Class Token. http://struts.apache.org/2.0.14/struts2-
core/apidocs/org/apache/struts2/components/Token.html.

[32] E. Sheridan. OWASP CSRFGuard
Project.https://www.owasp.org/index.php/CSRF_Guard, 2010.

[33] N. Mendes, A. A. Neto, J. a. Dura ̃es, M. Vieira, and H. Madeira,
“Assessing and Comparing Security of Web Servers,” Proceedings of
the 2008 14th IEEE Pacific International Symposium on Dependable
Computing. IEEE Computer Society, 2008.

[34] S. Shekyan. “Identifying Slow HTTP Attack Vulnerabilities on Web
Applications”. Qualys Community, July 7, 2011.

[35] S. Shekyan, “How to Protect Against Slow HTTP Attacks”. Qualys
Community, November 2, 2011.

[36] The Apache Software Foundation. Security Tips. Apache HTTP
Server Version 2.5.
http://httpd.apache.org/docs/2.3/misc/security_tips.html, 2012.

[37] Oracle Database Documentation Library. Developing Applications
Using Data Encryption. Oracle® Database Security Guide 10g
Release 1 (10.1). Part Number B10773-0.

[38] Vincent C. Hu David F. Ferraiolo D. Rick Kuhn, “Assessment of
Access Control Systems”. National Institute for Standards and
Technology (NIST), September 2006.

[39] The Apache Software Foundation. The Apache Tomcat 5.5
Servlet/JSP Container Realm Configuration HOW-TO.
http://tomcat.apache.org/tomcat-5.5-doc/realm-howto.html.

[40] M.Shema. “Seven Deadliest Web Application Attacks”, Syngress,
2010.

[41] Foundstone Hacme Series. McAfee Corp.
[42] WebGoat Project. OWASP. http://www.

owasp.org/index.php/Category:OWASP WebGoat Project .
[43] L.Ertaul, Y.Martirosyan, “Vulnerability Report”,

http://www.mcs.csueastbay.edu/~lertaul/WEBSEC/VulnerabilityRepo
rt.pdf, January 2012.

[44] NIST, “Advanced encryption standard (AES),” Nov. 2001,
http://csrc.nist.gov/publications/fips/fips197/fips- 197.pdf.

[45] R. L. Rivest, A. Shamir, L. Adleman, ”A Method for Obtaining
Digital Signatures and Public-key Cryptosystems,” Commu- nications
of the ACM, vol. 21, pp. 120-126, 1978

[46] NIST/NSA, “FIPS 180-2: Secure Hash Standard (SHS)”, August 2002
(change notice: February 2004).

[47] QualysGuard Web Application Scanning (WAS), Qualys Inc.,
http://www.qualys.com/products/qg_suite/was/

[48] L.Ertaul, Y.Martirosyan, “QualysGuard WAS Evaluation”,
http://www.mcs.csueastbay.edu/~lertaul/WEBSEC/QualysGuardWAS
Evaluation.pdf, January 2012.

[49] L.Ertaul, Y.Martirosyan, “Full Crawling Report”,
http://www.mcs.csueastbay.edu/~lertaul/WEBSEC/FullCrawlingRepo
rt.pdf, January 2012.

[50] Java. Oracle Corporation, 1995.
[51] Tomcat Server. Apache Software Foundation.
[52] Oracle database management Server, Oracle Corporation.
[53] HyperText Markup Language (HTML), World Wide Web Consortium

and Web Hypertext Application Technology Working Group
(WHATWG).

[54] Cascading Style Sheets (CSS). World Wide Web Consortium.
[55] JavaScript. Brendan Eich. Netscape Communications Corporation.

Mozilla Foundation.
[56] Acunetix Web Vulnerability Scanner. Acunetix.

http://www.acunetix.com/vulnerability-scanner/
[57] Extensible Markup Language (XML), World Wide Web Consortium.
[58] JavaServer Pages Technologies (JSP), Sun Microsystems.
[59] L.Ertaul, Y.Martirosyan, “Acunetix Evaluation”,

http://www.mcs.csueastbay.edu/~lertaul/WEBSEC/AcunetixEvaluatio
n.pdf, February 2012.

