
Abstract- With the increase in mobile wireless
technologies, security breaches are also increasing. It has
become critical to safeguard our sensitive information
from the wrongdoers. So, having strong password is
pivotal. As almost every website needs you to login and
create a password, it’s tempting to use same password
for numerous websites like banks, shopping and social
networking websites. This way we are making our
information easily accessible to hackers. Hence, we need
a strong application for password security and
management. In this paper, we are going to compare the
performance of 3 key derivation algorithms, namely,
PBKDF2 (Password Based Key Derivation Function),
Bcrypt and Scrypt. We have developed an android
application by which we will measure the complexity and
time required to generate the hash of the password. This
will give us an idea about the effectiveness of these 3
algorithms. Performance comparison and analysis is also
given in this paper.

I. INTRODUCTION
 Cryptographic hash functions have a feature of

determinism which means they will take large amount of
data as input and generate a fixed length output [1].The fixed
length output is also called message digest or hash. It is not
possible to recreate the input data from its hash value. These
one-way hashing functions have following properties:

• Computes hash of any message quickly.
• Not possible to regenerate original value from its

hash.
• Not possible to change the message without

modifying the hash.
• No two messages have same hash.

Usually, user chosen passwords are hashed and stored in
the database. These hashed passwords are then encrypted
using cryptography algorithms. Typical hash functions are
MD5, SHA1 and SHA256. Hashed passwords are vulnerable
to Dictionary/Rainbow table attack [4] and Brute Force
Attack [4]. Applications of hash functions are enormous in
cryptography and programming practice. Encryption and
hash functions are two related and complementary fields and
are not the replacement technologies for one another.
PBKDFs are generally designed to be computationally
insensitive, so that it takes relatively long time to compute.
Hence, it is tough for the hackers to retrieve the password.

Hashing algorithms are used for mapping of variable
length data to fixed output, retrieving data from the database

or data lookup. Whereas, Cryptographic hash functions are
used for building blocks for HMACs which provides
message authentication. They ensure integrity of the data
that is transmitted. Collision free hash function is the one
which can never have same hashes of different output. If a
and b are inputs such that H (a) =H (b), and a ≠ b.

User chosen passwords shall not be used directly as
cryptographic keys as they have low entropy and
randomness properties [2].Password is the secret value from
which the cryptographic key can be generated. Figure 1
shows the statics of increasing cybercrime every year. Hence
there is a need for strong key generation algorithms which
can generate the keys which are nearly impossible for the
hackers to crack. So, PBKDF2, Bcrypt and Scrypt provide a
solution to this issue.

PBKDF2 works on pseudorandom function (PRF) with
fixed number of iterations, denoted as C. It takes salt, user
chosen password and desired length of output key as an

input. By repeating the process (PRF) to the number of

iteration count, the cryptographic key is generated [9].

Increasing the computation makes it complex which is

known as key stretching and resists the brute force and
dictionary attacks.

 Bcrypt has expensive key setup schedule and is a cross
platform encryption utilty. It uses EBC (Electronic Code
Block) and is a cross platform encryption utility.It divides
the input data into subkeys and then starts block encryption
of the subkeys.The resultant is encrypted subkeys appended

Levent Ertaul, Manpreet Kaur, Venkata Arun Kumar R Gudise
CSU East Bay, Hayward, CA, USA.

levent.ertaul@csueastbay.edu, makur94@horizon.csueastbay.edu,

Implementation and Performance Analysis of
PBKDF2, Bcrypt, Scrypt Algorithms

varunkrg@aol.com

Fig 2: A generic diagram of PBKDF2

Figure 1: Cybercrime every year

mailto:levent.ertaul@csueastbay.edu�
mailto:makur94@horizon.csueastbay.edu�

with some value.This process will keep on repeating until all
the subkeys are hashed[3].Bcrypt has lot of computation
which makes it extremely invulnerable to dictionary and
brute force attack.Hence,bcrypt is very secure to use.

Scrypt is hashing algorithm which makes use of
password based key derivation function. It generates large
vector of pseudorandom bit strings.It takes large amount of
memory and cpu cost. Many pseudorandom numbers are
generated in the whole process that are stored in random
access memory so it occupies immense memory space.It is
considered as an expensive algorithm as each element that is
generated during the time of hashing requires more memory
and computation.This is very secure as it is very hard for
attackers to crack this hashed message due to lack of
resources and memory[11].

Section II focuses on the working of the key streching
algorithms (also called Salted hashing) and how they are
different from the traditional hashing. Section III contains
explanation about the algorithms of PBKDF2, Bcrypt and
Scrypt.

II. TRADITIONAL HASHING VS KEY DERIVATION
FUNCTION

Passwords are never stored in plain-text format, so to
store passwords in database, hash of the passwords are
generated. Hash algorithms are one-way functions. They can
turn any amount to variable data to fixed length output. The
generated output is impossible to reverse to get the plain-
text. Hence, it provides a level of security as there is no
threat to your data even if the password file is compromised.
Examples of these cryptographic hash algorithms are
SHA256, SHA512, WHIRLPOOL and RipeMD[1][6]. This
is traditional way of storing and securing the passwords.
This type of hashing is still susceptible to cracking as there
are more applications and resources available to do evil to
your data. These types of passwords can be recovered with
Brute Force and Dictionary attacks, lookup tables, reverse
lookup tables and Rainbow tables.

Salted hashing provides the security from these attacks
and make password cracking extra difficult. Salt helps us to
randomize the hashes [12]. It is a random string of bits
which can be prepended or appended to the user chosen
password before hashing the password [7]. It makes all the
stored hashes unique as the salt generated different every
time and needs not to be a secret. Adding salt to the
passwords before hashing makes lookup table and rainbow
table attacks ineffective. But passwords are still open to
brute force or dictionary attacks. These few attacks are still
effective because of High-end graphic cards and custom
hardware that is able to compute billions of hashing per
second.

Password cracking can be made harder by key stretching.
Purpose of key stretching is to add computation to the
process of key generation to make the algorithm slow.
Hence, in PBKDF2, Bcrypt and Scrypt we have a security
factor which is iteration count. With the value of iteration
count, we can decide how slow we want the algorithm to be.
Iteration count can be chosen such that it makes hash

function slow enough to impede the attack, but still fast
enough not to cause a noticeable delay for the user.[8]
Following are the common features for the key derivation
functions:

• Deterministic Functions.
• One-way Functions.
• Slow hashing functions.
• Key stretching functions.

Next section gives information about the algorithms for
PBKDF2, Bcrypt and Scrypt.

III. ALGORITHMS OF PBKDF2, BCRYPT AND
SCRYPT

PBKDF2, Bcrypt and Scrypt are the latest key derivation
functions. They provide strongest password security. They
have key stretching and salted hashes which makes very
tough for the hacker to break into the security of these
password hashes.

PBKDF2 is a key generation algorithm and it is a part of
RSA Public Key Cryptographic Standards (PKCS #5
V2.0).It is also published by Internet Engineering Task
Force as RFC 2898.This Key derivation function is designed
to be slow by increasing its computation and complexity. So
it is also called key stretching function which safeguards it
from many cryptographic attacks. It applies a pseudorandom
function such as cryptographic hash, cipher or HMAC.
PBKDF2 has following inputs:

• Password (P): User chosen password which is
needs to be hashed.

• Number of Iterations (c): The algorithm is
iterates this number of times before returning
the hash password. This parameter slows down
the algorithm and helps to safeguard against
security attacks.

• Salt: Salt is a random number which is
appended to the password to make it more
secure.

• dkLen: Length of the derived key in octets
which is at most (2^32 -1)* hlen (digest size of
hash function).

Output:
• Derived key (DK)
The effectiveness of dictionary and brute-force attacks

is reduced because it is a slow algorithm and it takes lots of
time for the attacker to get the original password. The salt
value and number of iterations parameter makes it even
harder to guess the password. The salt value which is added
to password lessens the capability of rainbow attack. [4]
Key Derivation process
The key derivation function accepts the following input
parameters.
Key = PBKDF2(PRF, Password, Salt, c, dkLen)
PRF is a pseudorandom function which takes two input
parameters and output length hLen .Password is the master
password from which a derived key is generated.
Each hLen-bit block Ti of derived key DK, is computed as
follows:

DK = T1 || T2 || ... || Tdklen/hlen Ti = F (Password, Salt, c,
i)

The function f is known as xor (^) of c which iteration of
chained PRFs.

F (Password, Salt, c, i) = U1 ^ U2 ^ ... ^ Uc
 Where: U1 = PRF(Password, Salt || INT_32_BE(i)) U2 =
PRF(Password, U1) ... Uc = PRF(Password, Uc-1).
 Basically, in order to recover passwords from the system
attackers either brute force technique or the dictionary attack.
The intruders estimate the passwords by using some hashing
techniques and then differentiating the hashing results to
store them to recognize if the results are similar with the
user’s password in the system. Normal cryptographic hash
functions can be used by attackers to guess huge number of
passwords per second.

Here comes the PBKDF2 which helps users in every
way to lessen such privacy attacks and at the same time it
becomes hard for intruder to guess the original passwords.
They would be successful in getting few thousand passwords
per second as far as PBKDF2 systems are concerned. So,
PBKDF2 systems create some crucial situations that would
make it impossible for hackers to attack them. Also, if we
use salt in the hashing process, the ability to use precompiled
hashes would be reduced by the passwords itself for attacks
in the system.

PBKDF2 Strategies:

• Computing output in host endianess.
• Vigorously lines everything in the inner loop.
• Buffering and padding are not required inside loop.
• Parallelization can be done for lengthy outputs.
• Minimal copies can be made inside loop.

Where PBKDF2 is being used?

• AES Encryption scheme by WinZip.
• For secure wireless networks through Wi-Fi

Protected
• Firefox Sync
• Cisco IOS
• For the protection of user passwords and pass codes

in Apple’s IOS mobile operating systems.

Bcrypt
Bcrypt is the key derivation function for the passwords

being designed for the systems. It is one of the most popular
and powerful algorithms which is quite successful in
restraining the password hacking and other unwanted attacks
in the system. It functions similar to Blowfish Block Cipher.
Therefore, this bcrypt is based on EKSBlowfish procedure
which strengthens the password encryption in order to avoid
attacks. It encrypts 192 bit magic values [5] by using 128-bit
salt. Above all, bcrypt is using expensive key setup in
Eksblowfish.
 There are two phases in which bcrypt algorithm is
being executed. In the very first phase, the Eksblowfish
Setup is called with the salt, password and cost to process
the Eksblowfish state. However, the expensive key schedule
consumes lots of time. On the basis of 192-bit value of

OrpheanBeholderScryDoubt is encrypted at 64 times from
the previous phase to the particular state using Eksblowfish
in ECB mode. The 128-bit salt would be concatenated with
final result of encryption loop to provide the output. One
issue with bcrypt is that salting is not good enough to hash a
string. But Still Bcrypt keeps on fighting with processing
power using iterations of encryption. This process is known
as work or cost factor.
How Bcrypt Works?
Bcrypt makes use Blowfish encryption algorithm consisting
of keying schedule [6]. It includes work factor as well. The
hashed value being created comprises of the steps listed
below:

• First of all, Bcrypt algorithm version identifier is
executed

• Cost factor is included
• Every 16-byte salt value in Bcrypt is encoded in a

adapt Base-64 (22 characters)
• cipher text (remaining characters) is produced

For example Bcrypt hash is;

$21$10$MN9CW1vkR2xSXT8jqchug.wvLZbl4mtapxK0u/S
LbTcgl9Ldzlq60

It will be shown as follows:
• Crypt algorithm version is 2a
• It uses a Cost factor of 10
• Salt is MN9CW1vkR2xSXT8jqchug.
• The cipher text comes out to be is

wvLZbl4mtapxK0u/SLbTcgl9Ldzlq60

 We are implementing Java here via Spring-security 3.2.5.
Several methods are being tendered by Bcrypt object that
makes the usage of API relatively easy. GenSalt is one of the
general methods processed in the salt generation. The various
kinds of genSalt are following:

• genSalt() – In the process, gensalt() would use a
cost factor of 10. In order to generate the 16-byte
salt for hashing, this procedure would take a new
instance of Secure-Random class.

• genSalt(int log_rounds) – It uses an updated Cost
Factor to the value that is stated as integer and to
create the 16-byte salt , it uses a new instance of
Secure-Random class.

• genSalt(int log_rounds, SecureRandom) – It also
uses a modified Cost Factor with the value of the
specific integer. In order to create the 16-byte salt it
uses the provided SecureRandom -instance.

 Hashed passwords can be generated easily once the salt is
implemented by simple call in program;

• hashpw (String password, String salt) – The given
password is hashed with the given salt.

Algorithm
 bcrypt(cost, salt, input)
 state EksBlowfishSetup(cost, salt, input)
 ctext "OrpheanBeholderScryDoubt" // 64-bit bocks
 repeat (64)

 ctext EncryptECB(state, ctext) //encrypt using standard
Blowfish in ECB mode

return Concatenate(cost, salt, ctext)

 Implementations are fluctuated in the approach of
changing passwords into initial numeric values here. It leads
to reducing the strength of passwords sometimes which
contains special characters. [6]
Cost Factor
 The real value of Bcrypt gives us the Cost Factor. The
Present processors and technologies permits us to generate
the brute force attacks easily that can select targets straight in
the system. The increase in the cost factor is exponential in
the cost factor (as 2^cost factor).The Cost factor being
created in every process is stored as hashed value.

Scrypt
Scrypt is a key derivation function which is

computational intensive and it consumes more time to
compute. For every operation, the authenticated users have
to perform the function and the time taken would be
negligible as well [11]. High level of security is being
provided to users and their data through this function that
makes it next to impossible for the intruders to crack the
original passwords. Even it is so powerful that it makes such
complicated situations that the attacker won’t get the actual
passwords if he makes millions of guesses too [10].

The guessing technique used is Brute Forcing. However,
script functions are developed to avoid the attack attempts
by increasing the requirements of resources of algorithms.
Specifically, this algorithm is implemented in such a way
that it should use the highest amount of memory allocated to
other password based Key Derived Functions. This can be
done by making both size and cost of hardware
implementation for any particular device more expensive
and at the same time parallelism used by an attacker should
be of minimum amount for the limited amount of financial
resources[10].
Function scrypt(Passphrase,Salt,N,p,dkLen):
(B0 ... Bp−1) ← PBKDF2HMAC_SHA256(Passphrase, Salt,
1, p * MFLen)

 for i = 0 to p-1 do
 Bi ← SMix(Bi,N)
 end for

Output ← PBKDF2HMAC_SHA256(Passphrase, B0 || B1 ...
Bp−1, 1, dkLen)

MFLen - Length of block mixed by SMix()
hLen – length of produced by HMAC_SHA256()
dkLen- output length, positive integer satisfying dkLen ≤
(232− 1) * hLen.
N- CPU/memory cost parameter.
p - Parallelization parameter; a positive integer satisfying p ≤
(232− 1) * hLen / MFLen.
 We have applied these algorithms in our application to
check how much time they are taking to create the hash.
Also, we can analyze the behavior of each algorithm as we
are varying the even parameters in the 3 algorithms. Next
section will explain about the application.

IV. IMPLEMENTATION OF PBKDF2,BCRYPT AND
SCRYPT

We have implemented an android application where we
are securing the contacts numbers saved on the android
device by using these 3 algorithms. User can select any one
of these 3 algorithms to generate the encrypted contacts. We
are measuring the performance of the algorithms by varying
the input parameters which are common in all 3 algorithms.
Here are the software (Table I) and hardware specification
(Table II) for the application.

Table1. Software Specification

Type Specification
Operating system Windows, Linux
Language Java Server Pages
Version JDK 1.7
Back-end MySQL(XAMPP Server)
Server Apache
Tool Netbeans, Elipse

Table II. Hardware Specification
Type Specification
Processor PENTIUM IV
Clock Speed 2.7 GHZ
Ram Capacity 1 GB
Hard Disk Drive 250 GB
Monitor 15 VGA Color

 ‘Contact Securing Application’ is an android
application where user can register with his credentials and
will use those credentials to login in the application. That
password will be stored in hashed version which will be in
non-readable format to humans. User can use that password
to decrypt his contacts later in the application. This user
chosen password will be used as input to the one of the 3 key
generation algorithms (PBKDF2, Bcrypt and Scrypt).The
cryptographic key generated by these algorithms will be used
as input to AES algorithm (128 bit) which is used to encrypt
the contact numbers.
 Figure 3 is the Login page of the application. It will
appear when user runs the application. Here, we have Email
and password as text fields, sign-in and register button. User
needs to create an account if he does not have one. User can
redirect to registration page while hitting register button;
otherwise he can directly sign in. Valid credential will lead
him to the next screen. An error message will appear in case
of incorrect credentials.

Figure 3. Login Screen

 On clicking the register button, register screen will be
shown as in figure 4.We have 3 textboxes; name, email id
and password. On clicking register, all his information will
be stored in the database.

 After creating an account and login, User will be
navigated to next screen (Figure 5).Here we have 3 buttons
that are having the name of 3 algorithms on them,
respectively. User can select any of the algorithms to encrypt
his contacts. We also have a graph button here which will
show in time taken (in nanoseconds) to generate the hash.
After using all 3 algorithms, user can compare the time taken
by 3 algorithms. The ‘Logout’ Button will help user to log
the application out.

Figure 5 Home Screen

 On choosing any one of them, Figure 6 is the next screen
that will pop up on the android device.

Here, it is showing all the contact numbers that are
stored in the android device. On tapping ‘Start Encrypt’
button, the contact numbers will start encrypting. Processing
will be shown on screen (figure 7).

After encrypting, we can also decrypt the contact numbers
but it will need the same password. Here, authenticity of the
user can be verified. Only the intended user, who has
encrypted the contacts, can decrypt them. See Figure 8.

Figure 6 Encryption

Figure 7 Encryption Process

Figure 4.Registration

We can click ’Home’ button to go back to the home screen
where 3 algorithms are listed (Figure 5). We can try
encrypting the contact numbers using all the three
algorithms one by one. After we are done doing that, there is
graph button on home screen (Figure 5) to check the
performance of each algorithm.

On taping the graph button, Figure 9 will appear on screen.

Let us see how the performance of the algorithms varies if
we change some important and even parameters in these
algorithms. Next section is about performance analysis.

V. TESTS AND RESULTS
For testing purpose, we experimented by varying the even

parameters: salt value, key length and Number of iterations.
We will take these three parameters as basis and will
compare the output on the basis of these parameters in terms
of time taken to generate the hash of the password.

Table 3. Constant parameters
Parameters PBKDF2 Bcrypt Scrypt
Salt(bytes) 16 16 16
Iteration
count(int)

1000 1000 1000

0

200

400

600

800

1000

1200

PBKDF2 Bcrypt Scrypt

Key Length=16
bits

Key Length=32
bits

Key Length=64
bits

 Figure 10. Varying Key Length

Figure 10 shows the performance when we have kept Salt
(Bytes) and Iteration Count (integer) as constant and we are
varying the Key Length. Constant parameters are shown in
Table 3. In the graph, the first 3 bars are of PBKDF2 with
different key lengths (16 bits, 32 bits and 64 bits).

Table 4. Constant Parameters
Parameters PBKDF2 Bcrypt Scrypt
Salt(bytes) 16 16 16
Key
Length(bytes)

128 128 128

0

100

200

300

400

500

600

700

PBKDF2 Bcrypt Scrypt

Iteration
Count=10

Iteration
Count=100

Iteration
Count=500

The 3 bars of each algorithm is showing the time taken in
milliseconds with Salt (bytes) and Key Length (bytes) as
constant(as shown in table 4) with different variation count(
10,100 and 500).

Table 5 constant parameters
Parameters PBKDF2 Bcrypt Scrypt
Salt(bytes) 16 16 16
Key
Length(bytes)

128 128 128

Figure 8 Decryption

Figure 9 performance Graph

Ti
me
in

mil
lis
ec
on
ds

Ti
me
in
Mil
lise
co
nd
 Figure 11: varying iteration counts

0

200

400

600

800

PBKDF2 Bcrypt Scrypt

Salt=32 bytes

Salt=64 bytes

Salt=128 bytes

 Figure 12. Varying Salt value

In the last graph, we have kept Salt (bytes) and Key Length
as constant as in table 5.3 and we are changing salt to 3
cases (32 bytes, 64 bytes and128 bytes).

VI. CONCLUSION AND FUTURE
IMPLEMENTATION

Security is the major issue in today’s paperless world. There
are lots of applications that are running on PBKDF2 and are
working very successfully. They are considered The Best
Password Managers for 2016[13]. In our application, we
have presented the performance analysis of the three
algorithms. These algorithms are already implemented on
desktop platform. So, we have chosen the mobile platform to
measure the performance of these algorithms. We have
concluded that PBKDF2 is fast and can be considered the
best among 3 algorithms. But PBKDF2 is cracked as
reported in the news [14]. Bcrypt is slow because it is using
Blowfish which is using iterations as 2 to the power number
of iterations parameters. Bcrypt and Scrypt are memory hard
functions. They take large resources and computation power
to crack. Hence, they are nearly impossible to crack.

There is utmost need to have strong password as well as
manage them well. So, these algorithms provide solution to
the problem of password generation and management. With
all performance tests, we are clear that which algorithm is
providing what type of security. In future, we are trying to
modify it as multimedia securing application. Also, we will
try to implement it on platforms other than android like iOS.

VII. REFERENCES
1. S. K. Pal, D. Bhardwaj, R. Kumar and V. Bhatia,

"A New Cryptographic Hash Function based on
Latin Squares and Non-linear
Transformations," Advance Computing Conference,
2009. IACC 2009. IEEE International, Patiala,
2009, pp. 862-867

2. Turan, M. S., E. B. Barker, W. E. Burr, and L.
Chen (December 2010). “Recommendation for
Password-based Key
Derivation”.http://csrc.nist.gov/publications/nistpu
bs/800-132/nist-sp800-132.pdf.

3. Antonopoulos, A. M. (3 December 2014).
“Mastering Bitcoin: Unlocking Digital
Cryptocurrencies”. O'Reilly Media, 221-223.

4. Kak, Avi. "Lecture 24: The Dictionary Attack and
the Rainbow-Table ..." Purdue University, (27 Apr.

2015). Web.
https://engineering.purdue.edu/kak/compsec/NewLe
ctures/Lecture24.pdf.

5. Assurance Technologies. (2015).
passlib.hash.bcrypt - BCrypt.
http://pythonhosted.org/passlib/lib/passlib.hash.bcr
ypt.html.

6. Bansal, S. K. (April 10, 2014). “Securing
Passwords with Bcrypt Hashing Function”.
Retrived from:
http://thehackernews.com/2014/04/securing-
passwords-with-bcrypt-hashing.html.

7. Bard, A. (July 11, 2013). “3 Wrong Ways to Store a
Password And 5 code samples doing it right”.
https://adambard.com/blog/3-wrong-ways-to-store-
a-password/.

8. Provos, N., Mazières, D., (June 1999).”A Future-
Adaptable Password Scheme”. USENIX '99,
Freenix Track. Monterey, CA.
http://www.usenix.org/events/usenix99/provos.htm

9. Bezzi, M., & al., e. (2011). "Data privacy". In
Camenisch, Jan et al. Privacy and Identity
Management for Life. Springer, 185–186.

10. C. Percival, S. J. (2012-09-17). “The scrypt
Password-Based Key Derivation Function”. IETF.

11. CoinPursuit . (2014). “SHA-256 and Scrypt
Mining Algorithms”. Retrived from: CoinPursuit.

12. Goldberg, J. (June 6, 2012). A salt-free diet is bad
for your security. Retrieved from:
https://blog.agilebits.com/2012/06/06/a-salt-free-
Diet-is-bad-for-your-security/.

13. "The Best Password Managers for 2016." PCMAG.
Web. 18 Mar. 2016.

14. Goldberg, Jeffrey. "Crackers Report Great News
for 1Password4." 10 Mar. 2014.
https://blog.agilebits.com/2014/03/10/crackers-
report-great-news-for-1password-4/.

Ti
me
in
Mil
lise
co
nd

	Introduction
	II. TRADITIONAL HASHING VS KEY DERIVATION FUNCTION
	III. ALGORITHMS OF PBKDF2, BCRYPT and SCRYPT
	Key Derivation process
	PBKDF2 Strategies:
	Where PBKDF2 is being used?
	Bcrypt
	How Bcrypt Works?
	Cost Factor

	Scrypt

	IV. IMPLEMENTATION OF PBKDF2,Bcrypt and Scrypt
	V. TESTS AND RESULTS
	VI. CONCLUSION AND FUTURE IMPLEMENTATION
	VII. REFERENCES

