
Performance Analysis of CLEFIA, PICCOLO, TWINE
Lightweight Block Ciphers in IoT Environment

Levent Ertaul, Sachin Kattepura Rajegowda
California State University East Bay, Hayward, CA, USA

 levent.ertaul@csueastbay.edu, skattepurarajegowda@horizon.csueastbay.edu

Abstract - With the rapid evolution of Internet of Things, there
increased a necessity for strong data security crypto ciphers which
would operate successfully in constrained device environments. So,
the design of lightweight block crypto ciphers has been a very
dynamic research topic in the recent years. This paper outlines the
performance analysis of three generalized Feistel lightweight block
crypto ciphers - CLEFIA, PICCOLO and TWINE on a
STM32F401RE Microcontroller (MCU). Analysis of these crypto
ciphers is evaluated by considering various benchmark parameters
like energy and memory consumption, throughput, and execution
time. All these metrics are tested with different key sizes provided
by each crypto algorithm and on different plain text sizes of 512,
1024, 2048, 3072 Bytes. A comparative analysis of these results is
performed and suitable crypto ciphers are identified for each of
those parameters.

Keywords – IoT Security, Lightweight Cryptography, STM32F401
MCU.

I. INTRODUCTION

As the world goes wireless and with the involvement of IoT,
information security has been a very hot topic today. There are
chances that our home network could be accessed just by
compromising our smart-home device platforms [1]. As there is
a need to provide security for these devices and to provide this
security, the information which is communicated and exchanged
must be encrypted using cryptographic algorithms.

Various cryptographic algorithms are present to provide
encryption and they are generally classified into symmetric and
asymmetric crypto algorithms. Even though asymmetric
algorithms provide highest level of security [2] [23] (for
example - ciphers used in digital signatures), they require more
memory and computing capabilities and hence, they are not
advisable to be used in the resource constrained devices.

Symmetric algorithms are simple and make use of symmetric
keys to encrypt and decrypt the data. These are of two types.
Stream cipher – which takes one bit/byte at a time to encrypt and
decrypt, and Block cipher – which is a subset of Stream cipher
which considers group of bits/bytes at a time. Based on the
security needs of the target applications, Block ciphers can
provide better integrity and confidentiality, as they support
different keys and plaintext sizes [2].

This paper talks about three lightweight block ciphers
namely PICCOLO, CLEFIA, and TWINE which belong to the
Generalized lightweight Feistel Network (GFN) (which is a
tradeoff between security and light weightiness) [3]. In the
following Section II, an Overview of these ciphers are presented

with their specifications and security. Section III describes
cipher implementation on STM32F MCU. Finally, in Section IV,
performance analysis and comparison of all three algorithms
with respect to few important metrics are discussed and
analyzed.

II. OVERVIEW OF CLEFIA, PICCOLO, TWINE
LIGHTWEIGHT BLOCK CIPHERS

In this section, security and specifications of PICCOLO,
CLEFIA, TWINE block cryptographic algorithms are examined.

PICCOLO supports 64-bit block size with 80-bit and 128-
bit key sizes. Structure of PICCOLO block cipher is given in
Figure 1. Algorithm is divided into data processing part and the
key scheduling part. In data processing part, 64-bit plaintext,
four 16-bit whitening keys and 2r 16bit round keys (r is the
number of rounds) are used to encrypt the plaintext. The text is
decrypted in a similar fashion with only changes made to the
order of round keys and whitening keys selection. In each round,
output of previous stage is permuted (shuffled on words of 8bits)
and given as input to the next stage.

Figure 1: Structure of PICCOLO [7].

“In Key scheduling part, Input key is divided into five 16-bit
sub keys for 80-bit key size and eight 16-bit sub keys for 128-bit

mailto:levent.ertaul@csueastbay.edu
mailto:skattepurarajegowda@horizon.csueastbay.edu

key size which provides four 16-bit whitening keys and 2r 16bit
round keys” [7].

Full PICCOLO80 and 28-round PICCOLO128 are
susceptible to biclique attacks [5], and 14-round PICCOLO80
and 21-round PICCOLO128 are susceptible to Related-key
impossible diff attacks [6]. Therefore, 25 rounds for
PICCOLO80 and 31 rounds for PICCOLO128 are suggested to
be a sufficient security protection. Also, we make use of
constants which will be XORed with round keys to overcome
the self-similarity symmetry of round keys [7].

CLEFIA supports 128-bit block size with three different key
sizes: 128-bit, 192-bit, 256-bits. Structure of CLEFIA is as
shown in Figure 2. This algorithm is an ISO/IEC 29192-2
standard lightweight crypto cipher [10] currently available. The
basic building block of this algorithm is the GFN (d, r) where d
denotes the data branch and r is round. Data processing part of
the CLEFIA takes four 32-bit whitening key 2r 32-bit round key
and 128-bit plain text for encryption. The two F-functions are
used which are simple substitution and permutation (4x4
diffusion matrix).

Key scheduling part takes input key to derive the
intermediate key. CLEFIA128 uses GFN(4,12) and 60 32-bit
constants, CLEFIA192 uses GFN(8,10) and 84 32-bit constants,
and CLEFIA256 uses GFN(8,10) and 92 32-bit constants
respectively to generate intermediate key from the input key.
These intermediate keys are updated every two rounds with the
DoubleSwap function. Intermediate keys are expanded with
input key to derive four whitening keys and 2r round keys [13].

Figure 2: Structure of CLEFIA [13].

Round-12,13,14 are susceptible to integral attacks whereas
round-13,14,15 suffer from improbable differential attacks [11]
[12]. So, round-18,22,26 are preferable for 128,192,256-bit key
sizes to provide security against these attacks. Two S-Boxes are
used to overcome the byte ordering saturation attack and
algebraic attacks including XSL attack. Two different diffusion

matrices are used to provide immunity against differential and
linear attack [13].

TWINE uses 64-bit block size and supports two key sizes:
80-bit and 128-bits. In the data processing part of the algorithm,
64-bit plain text, 36 32-bit round keys are taken to provide a 64-
bit cipher text. Round function of TWINE is very simple (Figure
3) where in each round, eight F-functions are called which does
simple XORing plaintext with sub key and applying 4x4 S-Box.
Permutation (π) uses a more sophisticated approach to speed-up
diffusion compared to CLEFIA which does simple circular shift.
Here, only half of the circular shift rounds are required to diffuse
to all sub blocks. Decryption in TWINE uses same S-Box, key
schedule as encryption but the diffusion layer considered is the
inverse of encryption [4].

In key scheduling part of TWINE, input key uses 35 6-bit
constants to produce a 36 32-bit round keys. Key schedule of
TWINE provides an on-the-fly operation of producing round key
by sequentially updating its key state. By doing this hardware
footprint reduces which conversely increase the performance.
Since the round keys are updated sequentially there is no need
for bit permutation or the intermediate key generation [9].

Full cipher TWINE80 and TWINE128 are susceptible to
biclique attacks [8]. 23-round TWINE80 and 25-round
TWINE128 suffer from zero-correlation attacks. Therefore, 36
rounds for both the key sizes are recommended which gives
acceptable security enhancement [9] [20].

Figure 3: Round function of TWINE [4].

III. LIGHTWEIGHT BLOCK CIPHER
IMPLEMENTATION ON STM32F MCU

This section provides information on how the mentioned
ciphers were implemented on STM32 (ARM Cortex M4)
microcontrollers. A brief introduction regarding the platform
selected, how porting of the cipher is done and the software
development tool used is given next.

The platform specification considered for this project is
ARM Cortex M4 which are a family of 32-bit RISC MCUs and
uses ARMv7E-M architecture with 3 stage pipelining which
result in an ideal average CPI (clocks per Instruction) of 1.67
[21] [22]. Due to its high-energy efficiency (with low dynamic
power and integrated software controlled sleep modes),
performance, and inbuilt powerful trace technologies, ARM
Cortex-M4 microcontrollers have reached a high popularity in

cost sensitive embedded device requiring minimal area
configuration [23].

Figure 4: STM32F4 MCU and ARM Cortex-M4[23].

Since the aim of this project is to implement lightweight
block ciphers in IoT environments, STM32F401RE is
considered as the target platform, which is specifically designed
for these environments [24] [25] and supports the specifications
mentioned in Table 1 [25].

Table 1: STM32F401RE Hardware Specification.

Core ARM 32 Cortex M4

CPU Frequency 84 MHz (84,000,000 cycles per
sec)

Flash Memory 512 KBytes
SRAM 96Kbytes

Security MPU (Memory Protection Unit)
USB Type USB OTG FS

Supply Voltage (V) max 3.6
Supply current (per MHz) 137 (µA)

Implementations of the crypto algorithms which were written
in C language were referenced [29][30], and were initially
ported and tested on the MCU. These tests were not successful
as the referenced codes were found incompatible with our
MCU’s firmware framework. These referenced codes were
redesigned using embedded C++ language to shorten the size of
the code, to achieve maximum performance and to implement
the crypto algorithms (CLEFIA, PICCOLO, TWINE) on our
MCU’s hardware. The code was also modified to analyze the
performance metrics like memory efficiency, energy
consumption, execution time, and throughput of the crypto
cipher algorithms running on the MCU. Embedded C++
language is selected to implement the code among different
available programming languages like Assembly, java and
others, as it provides many appealing functionalities and
characteristics.

One of the most important characteristics of Embedded C++
language is that it is similar to the assembly language in terms of
performance and code size. It is an efficient, fast and highly
portable language [16] which is also easy to build and debug
[18] [14]. Lightweight block cipher specifications with their
block size and key sizes are shown in Table 2.

Online mbed compiler and Keil uVision5 is used as the IDE
to implement ciphers on STM32F4 MCU. They are open source

and provides rich features of MCU environments. Online mbed
compiler makes the coding portable and compiles the source
code directly into binary files which can then be flashed directly
on to the MCU by just click and drag [19]. Once the flash
succeeds, the MCU flash drive will reload and the green light
will be turned ON in the MCU. Keil uVision5 software is
supported in Windows and provides a sophisticated full-scale
debugger which can be used to monitor the serial port, perform
data tracing and etc.

Table 2: Lightweight Block Cipher Specifications.

 Key Size Block Size # Rounds

CLEFIA
128 Bit 128-Bit 18
192 Bit 128-Bit 22
256 Bit 128-Bit 26

PICCOLO 80 Bit 64-Bit 25
128 Bit 64-Bit 31

TWINE 80 Bit 64-Bit 36
128 Bit 64-Bit 36

IV. PERFORMANCE ANALYSIS & COMPARISION

In this part of the section, we discuss a set of benchmark
parameters like execution time, throughput of the encryption
process, memory consumption, energy consumption which are
used to calculate and determine which algorithm is best suited
for IoT environments. We also provide information regarding
how these are measured with respect to the STM32F4 MCU.

Speed of the operation or the execution time is one of the key
metric used to evaluate the performance of the block ciphers
[27]. For this, timer function is used (provided by the mbed
package) which is executed before the encryption operation and
stopped after it finishes. In our analysis, for each block as the
plaintext size increases, key schedule is also performed and
included in the execution time. The results are tabulated and
analyzed as follows.

Figure 5: CLEFIA encryption execution time.

512 1024 2048 3072
128 Bit Key 12.329 24.782 49.105 73.863
192 Bit Key 16.934 33.521 67.76 100.893
256 Bit Key 18.562 36.89 73.727 110.635

0

20

40

60

80

100

120

EX
EC

U
TI

O
N

 T
IM

E
(M

S)

PLAINTEXT SIZE (BYTES)

CLEFIA EXECUTION TIME

CLEFIA is executed for 128 bit, 192 bit, and 256 bit Keys
for plaintexts of size 512 Bytes, 1024 Bytes, 2048 Bytes, and
3072 Bytes and the average values were calculated and tabulated
as shown in Figure 5. As we see, the encryption is increasing
exponentially as the plaintext size increases. This is because the
block cipher uses two feistal function and two diffusion
matrixes. While the decryption follows a similar procedure with
only changes made to the order of round keys and whitening
keys selection.

Figure 6: PICCOLO encryption execution time.

In PICCOLO, the operational time for each key size and
plaintext sizes are shown in Figure 6. Here, we observe the
exponential raise of encryption time as the plaintext increases
but when we compare two key sizes we can see more growth in
128-bit key size.

Figure 7: PICCOLO encryption execution time.

Finally, TWINE lightweight block cipher is executed and the
time taken to encrypt different plaintext sizes with respect to
different key sizes are observed and provided in Figure 7 from
this we can infer that for both keys, plaintext encryption varies
by few milliseconds. This is because both the key sizes use same
SBox and feistel function to encrypt.

Figure 8: 128-bit key execution time comparison of ciphers.

Figure 8, provides the comparison results of all three
lightweight block ciphers with respect to 128-bit key encryption.
We can see that PICCOLO128 is taking more time as the
number of rounds is more compared to CLEFIA (Table 2) but
even though TWINE is having more number of rounds but the
encryption design is just the addition and permutation of
plaintext and key sizes.

Figure 9: 80-bit key execution time comparison of ciphers.

512 1024 2048 3072
80 Bit Key 45.32 90.517 180.865 217.512
128 Bit Key 57.662 115.291 230.445 345.618

0

50

100

150

200

250

300

350

400

EX
EC

U
TI

O
N

 T
IM

E
(M

S)

PLAINTEXT SIZE (BYTES)

PICCOLO EXECUTION TIME

512 1024 2048 3072
80 Bit Key 9.112 18.243 36.192 54.337
128 Bit Key 9.733 19.368 38.581 57.773

0

10

20

30

40

50

60

70

EX
EC

U
TI

O
N

 T
IM

E
(M

S)

PLAINTEXT SIZE (BYTES)

TWINE EXECUTION TIME

512 1024 2048 3072
CLEFIA 12.329 24.782 49.105 73.863
PICCOLO 57.662 115.291 230.445 345.618
TWINE 9.733 19.368 38.581 57.773

0

50

100

150

200

250

300

350

400

EX
EC

U
TI

O
N

 T
IM

E
(M

S)

PLAINTEXT SIZE (BYTES)

128-BIT KEY COMPARISION
CLEFIA PICCOLO TWINE

512 1024 2048 3072
PICCOLO 45.32 90.517 180.865 217.512
TWINE 9.112 18.243 36.192 54.337

0

50

100

150

200

250

EX
EC

U
TI

O
N

 T
IM

E
(M

S)

PLAINTEXT SIZE (BYTES)

80-BIT KEY COMPARISION

Figure 9 provides the comparison results of PICCOLO and
TWINE with respect to 80-bit key size. TWINE encryption takes
minimal time compared to PICCOLO for the same reason
mentioned above.

Energy consumption can be calculated in different ways [27].
In this paper, we consider one of the approach where CPUs
operating voltage, average current drawn by each cycle in an
encryption process is used to measure the energy consumption.
For example, in the MCU that we considered, where the CPU is
operating at 84MHz frequency, supply voltage of 3.6 volt, and
average of 0.0115 Ampere current and if suppose 10000 clock
cycles were assumed, then the energy consumed by an operation
is 4.93 µA-sec or µ Joule. Following is the mathematical
equation used to determine the consumed energy level by an
encryption algorithm in this paper.

E = I * N* τ * VCC

Where I is the average current in ampere, N is the number of
clock cycles, τ is the clock period and VCC is the supply voltage
[27].

Table 3: Number of Clock Cycles for each cipher.

Algorithms Key Sizes Clock Cycles

CLEFIA
128-bit 3,349,261
192-bit 4,591,406
256-bit 5,049,170

PICCOLO
80-bit 12,349,197

128-bit 15,719,935

TWINE
80-bit 2,463,314

128-bit 2,621,436

Cortex M4 provides a Data Watchpoint and Trace (DWT)
unit which can be used to trace and setup any benchmarks. By
assuming there is a fixed energy consumption for each clock
cycle we can get the total number of clock cycles executed for a
function from the MCU’s inbuilt register DWT_CYCCNT by
initializing as follows [26]:

Table 3 provides the average clock cycles required to
perform an encryption operation in each of the ciphers. Figure
10 shows the amount of energy consumed by each of the block
ciphers from different key sizes in µJoules per bits. Figure
clearly shows that PICCOLO takes more energy to compute
encryption as the number of clock cycles required to execute is
more when compared to other ciphers. Conversely TWINE

consumes least energy with only 1291.995 µJoules per bit and
CLEFIA on the other side burns 1650.71 µJoules per bit when
the key size of 128-bit is considered. With 80-bit key size we
can see that TWINE performs exceptionally well with only
1214.065 µJoules per bit and PICCOLO performs worst with a
higher energy consumption of 6086.42 µJoules per bit.

Figure 10: Energy usage comparison of ciphers.

Memory compromises of the RAM which is used to execute
programs and the flash memory (ROM) which consists of
programming and data flash memory, where programming flash
memory contains the program code for specific application and
data flash memory stores any sensing data or temporary data like
the look-up tables if present [15]. Online mbed IDE provides a
good GUI based memory representation which is used to
compare the memory allocation [17] of the specified block
ciphers. Efficient usage of memory is the key role in IoT
environments as this is directly related to the operational speed
and throughput of the system.

Figure 11: Memory usage comparison of ciphers.

CLEFIA PICCOLO TWINE
80 bit 6086.42 1214.065
128 bit 1650.71 7747.72 1291.995
192 bit 2262.915
256 bit 2488.5075

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

µ
Jo

ul
es

 /
bi

ts

ENERGY CONSUMPTION

CLEFIA PICCOLO TWINE
ROM 27.5 25.6 25.1
RAM 1.3 1.5 1.3

27.5
25.6 25.1

1.3 1.5 1.3

0

5

10

15

20

25

30

KB
yt

es

MEMORY CONSUMPTION

Figure 11 gives the amount of memory needed by CLEFIA,
PICCOLO and TWINE. TWINE requires little memory both in
RAM and ROM as it has simple round function which does not
store more lookup tables to fetch data often. But CLEFIA has
less memory efficiency because it contains two different Feistel
functions and two different SBox and diffusion matrix which
causes more lookups to perform an encryption also since the key
sizes used by the lightweight block cipher is more (128, 192, 256
bits) compared to other two block ciphers it is reasonable to
accept this high memory consumption as it provides more
security (more the key size higher the security) [28]. Memory
efficiency of PICCOLO is good compared to CLEFIA but worst
when compared with TWINE, this is because even though
PICCOLO takes two SBox layers both are just substitution
operation and a permutation which is done with one diffusion
matrix. So, TWINE is considered as the suitable lightweight
block cipher where the memory constraints are high.

Throughput is the metric used to measure amount of data a
hardware system can ideally process in a given interval of time.
In this paper, we calculate the throughput of each of the
lightweight block ciphers to find out which stands best with
respect to the resource constraint real world environment where
encryption throughput becomes the key metric. To calculate the
throughput, number of cycles taken by the encryption process is
first calculated later this value is divided with the block size of
the algorithm to get total encryption cycles per bit.

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑐𝑦𝑐𝑙𝑒𝑠/𝑏𝑖𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠

𝐵𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

Since our MCU runs under 84MHz which means that there
can be 84,000,000 cycles getting executed each second. So, the
throughput of the encryption function of each lightweight bock
ciphers is calculated as follows.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐶𝑃𝑈 𝑆𝑝𝑒𝑒𝑑

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑐𝑦𝑐𝑙𝑒𝑠/𝑏𝑖𝑡)

Figure 12: Throughput comparison of ciphers.

Figure 12 reprints the value calculated for each of the
lightweight block ciphers. We can see that CLEFIA (128, 192,
256-bit keys) has the highest throughput with an average
throughput of 4Kbps. Whereas TWINE (80, 128-bit keys) as a
throughput of 4.99Kbps and PICCOLO has 0.6Kbps, this is
because the number of clock cycles per bit required to perform
an encryption operation in PICCOLO is more compared to other
block ciphers and it is indirectly proportional to the throughput
of the lightweight block ciphers.

When we compare all three block ciphers with 128-bit
encryption then CLEFIA stands first with 5Kbps as the number
of clock cycles per bit required to compute an encryption is less,
then TWINE stands second with 3.2Kbps and last PICCOLO
with a throughput of 0.5Kbps. With 80-bit key encryption we
can see that PICCOLO still stands at last with 0.6Kbps when
compared to TWINE with 3.4Kbps. Since, PICCOLO has the
least throughput we can say that there will be more delay and
more energy spent to perform an encryption with real time
application in an adhoc environment and therefore this
lightweight block cipher is not a suitable candidate to be
selected. So, we choose CLEFIA as the best choice.

V. CONCLUSION

Internet of things faces numerous challenges like bandwidth,
security, privacy, power, scalability and many more among
which privacy and security is the most important things to be
considered in this environment as we cannot trust all the users in
IoT. There are numerous crypto block ciphers available but due
to resource constraints, lightweight cryptographic algorithms are
chosen to be an ideal candidate for these environments. This
papers provides a benchmark performance analysis on STM32F
MCU with respect to energy consumption, throughput, execution
time and memory consumption which plays an important role in
choosing ideal lightweight block ciphers for resource
constrained environments. When execution time or the operation
time of an encryption function becomes the deciding factor for
some applications like In-Vehicle devices, or the industrial
control systems in an IoT environment then TWINE is the
suitable candidate with key size of 80-bit, however when we
consider 128-bit for more security [28] then CLEFIA turns out
to be the suitable ciphers for small sized plaintext and as the size
increases TWINE becomes the ideal candidate for encryption.
Applications like RFID, sensor nodes, medical/healthcare
devices etc. requires less memory consumption and less energy
consumption so that the operational speed increases, TWINE is a
best solution followed by CLEFIA which differs only by few
metric units. In IoT environment, throughput matters a lot
because higher the throughput lesser the delay and therefore
hardware can spend less energy and later go into sleep mode
which prolongs the battery power. CLEFIA is the best choice for
encryption where higher throughput matters.

CLEFIA PICCOLO TWINE
80 bit 0.677 3.398
128 bit 4.999 0.532 3.193
192 bit 3.646
256 bit 3.316

0

1

2

3

4

5

6

K
bi

ts
 /

se
c

THROUGHPUT EFFICIENCY

VI. REFERENCES

[1] Meola, Andrew. "How the Internet of Things will affect
security & privacy." Business Insider. Business Insider, 19
Dec. 2016. Web. 28 Feb. 2017.

[2] Stallings, William. Cryptography and network security:
principles and practice. Upper Saddle River, NJ:
Pearson/Prentice Hall, 2006. Print.

[3] "Lightweight Cryptography." CryptoLUX > Lightweight
Cryptography. N.p., n.d. Web. 28 Feb. 2017.

[4] Suzaki, T., Minematsu, K., Morioka, S., & Kobayashi, E.
(2011). Twine: A lightweight, versatile block cipher. In
ECRYPT Workshop on Lightweight Cryptography (pp.
146169).

[5] Wang, Y., Wu, W., & Yu, X. (2012). Biclique cryptanalysis
of reduced-round piccolo block cipher. In Information
Security Practice and Experience (pp. 337-352). Springer
Berlin Heidelberg. pdf at springer

[6] Minier, M. (2013). On the Security of Piccolo Lightweight
Block Cipher against Related-Key Impossible Differentials. In
Progress in Cryptology–INDOCRYPT 2013 (pp. 308-318).
Springer International Publishing. pdf at springer.com

[7] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita,
T., & Shirai, T. (2011). Piccolo: an ultra-lightweight
blockcipher. In Cryptographic Hardware and Embedded
Systems–CHES 2011 (pp. 342-357). Springer Berlin
Heidelberg. pdf at springer

[8] Çoban, M., Karakoç, F., & Boztaş, Ö. (2012). Biclique
cryptanalysis of TWINE. In Cryptology and Network Security
(pp. 43-55). Springer Berlin Heidelberg. pdf at eprint.iacr.org

[9] Wang, Y., & Wu, W. (2014, January). Improved
Multidimensional Zero-Correlation Linear Cryptanalysis and
Applications to LBlock and TWINE. In Information Security
and Privacy (pp. 1-16). Springer International Publishing. pdf
at springer.com

[10] Website of the International Standard
Organization, http://www.iso.org/iso/iso_catalogue/catalogue
_tc/catalogue_detail.htm?csnumber=56552

[11] Li, Y., Wu, W., & Zhang, L. (2012). Improved integral
attacks on reduced-round CLEFIA block cipher. In
Information Security Applications (pp. 28-39). Springer
Berlin Heidelberg. pdf at springer

[12] Tezcan, C. (2010). The improbable differential attack:
Cryptanalysis of reduced round CLEFIA. In Progress in
Cryptology-INDOCRYPT 2010 (pp. 197-209). Springer
Berlin Heidelberg.

[13] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., & Iwata, T.
(2007, January). The 128-bit blockcipher CLEFIA. In Fast
software encryption (pp. 181-195). Springer Berlin
Heidelberg.

[14] EmbeddedC."https://www.engineersgarage.com/tutorials/eme
bedded-c-language”

[15] "Memory Model - Handbook | mbed." Memory Model -
Handbook | mbed. N.p., n.d. Web.

[16] "Benefits of C/C over Other Programming
Languages." Invensis Blog. N.p., n.d. Web.

[17] "Memory Model - Handbook | mbed." Memory Model -
Handbook | mbed. N.p., n.d. Web.

[18] "Mbed Compiler - Handbook | mbed." Mbed Compiler -
Handbook | mbed. N.p., n.d. Web.

[19] "The mbed interface." The mbed interface - mbed OS 5
Handbook. N.p., n.d. Web.

[20] Suzaki, T., & Minematsu, K. (2010, January). Improving the
generalized Feistel. In Fast Software Encryption (pp. 19-39).
Springer Berlin Heidelberg. pdf at eprint.iacr.org

[21] "SystemyRTiembedded."“http://www.ue.pwr.wroc.pl/system
y_rt/RTE6.pdf”N.p., n.d. Web.

[22] "ARM Cortex-M." Wikipedia. Wikimedia Foundation, n.d.
Web.

[23] "Cortex-M4 Processor." Cortex-M4 Processor - ARM. N.p.,
n.d. Web.

[24] “http://www.st.com/en/microcontrollers/stm32-32-bit-arm-
cortex-mcus.html?querycriteria=productId=SC1169” N.p.,
n.d. Web.

[25] "STM32F401RE." STM32F401RE - STM32 Dynamic
Efficiency MCU, ARM Cortex-M4 core with DSP and FPU,
up to 512 Kbytes Flash, 84 MHz CPU, Art Accelerator -
STMicroelectronics.N.p.,n.d.Web.
http://www.st.com/en/microcontrollers/stm32f401re.html.

[26] "ARM Information Center." ARM Information Center. N.p.,
n.d.Web.
http://infocenter.arm.com/help/index.jsp?topic=%2Fcom.arm.
doc.ddi0337h%2FBIIFBHIF.html.

[27] "Studying the Effects of Most Common Encryption
Algorithms."(n.d.):n.pag.Web.
http://www.iajet.org/iajet/iajet_files/vol.2/no.1/Studying%20t
he%20Effects%20of%20Most%20Common%20Encryption%
20Algorithms.pdf.

[28] "Key size." Wikipedia. Wikimedia Foundation, n.d. Web.
[29] Kmarquet. "Kmarquet/bloc." GitHub. N.p., n.d. Web.

https://github.com/kmarquet/bloc/tree/master.
[30] "Sony Corporation Global Headquarters." SONY. N.p., n.d.

Web.http://www.sony.net/Products/cryptography/clefia/downl
oad/index.html.

http://link.springer.com/chapter/10.1007/978-3-642-29101-2_23
http://link.springer.com/chapter/10.1007/978-3-319-03515-4_21
http://link.springer.com/chapter/10.1007/978-3-642-23951-9_23
https://eprint.iacr.org/2012/422.pdf
http://link.springer.com/chapter/10.1007/978-3-319-08344-5_1
http://link.springer.com/chapter/10.1007/978-3-319-08344-5_1
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56552
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56552
http://link.springer.com/chapter/10.1007/978-3-642-27890-7_3
https://www.engineersgarage.com/tutorials/emebedded-c-language
https://www.engineersgarage.com/tutorials/emebedded-c-language
http://www.iacr.org/archive/fse2010/61470020/61470020.pdf
http://www.iacr.org/archive/fse2010/61470020/61470020.pdf
http://www.iacr.org/archive/fse2010/61470020/61470020.pdf
http://www.st.com/en/microcontrollers/stm32-32-bit-arm-cortex-mcus.html?querycriteria=productId=SC1169
http://www.st.com/en/microcontrollers/stm32-32-bit-arm-cortex-mcus.html?querycriteria=productId=SC1169

