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Abstract - With the rapid evolution of Internet of Things, there 
increased a necessity for strong data security crypto ciphers which 
would operate successfully in constrained device environments. So, 
the design of lightweight block crypto ciphers has been a very 
dynamic research topic in the recent years. This paper outlines the 
performance analysis of three generalized Feistel lightweight block 
crypto ciphers - CLEFIA, PICCOLO and TWINE on a 
STM32F401RE Microcontroller (MCU). Analysis of these crypto 
ciphers is evaluated by considering various benchmark parameters 
like energy and memory consumption, throughput, and execution 
time. All these metrics are tested with different key sizes provided 
by each crypto algorithm and on different plain text sizes of 512, 
1024, 2048, 3072 Bytes. A comparative analysis of these results is 
performed and suitable crypto ciphers are identified for each of 
those parameters.      

Keywords – IoT Security, Lightweight Cryptography, STM32F401 
MCU. 

 

I. INTRODUCTION 

As the world goes wireless and with the involvement of IoT, 
information security has been a very hot topic today. There are 
chances that our home network could be accessed just by 
compromising our smart-home device platforms [1]. As there is 
a need to provide security for these devices and to provide this 
security, the information which is communicated and exchanged 
must be encrypted using cryptographic algorithms. 

Various cryptographic algorithms are present to provide 
encryption and they are generally classified into symmetric and 
asymmetric crypto algorithms. Even though asymmetric 
algorithms provide highest level of security [2] [23] (for 
example - ciphers used in digital signatures), they require more 
memory and computing capabilities and hence, they are not 
advisable to be used in the resource constrained devices. 

Symmetric algorithms are simple and make use of symmetric 
keys to encrypt and decrypt the data. These are of two types. 
Stream cipher – which takes one bit/byte at a time to encrypt and 
decrypt, and Block cipher – which is a subset of Stream cipher 
which considers group of bits/bytes at a time. Based on the 
security needs of the target applications, Block ciphers can 
provide better integrity and confidentiality, as they support 
different keys and plaintext sizes [2]. 

This paper talks about three lightweight block ciphers 
namely PICCOLO, CLEFIA, and TWINE which belong to the 
Generalized lightweight Feistel Network (GFN) (which is a 
tradeoff between security and light weightiness) [3]. In the 
following Section II, an Overview of these ciphers are presented 

with their specifications and security. Section III describes 
cipher implementation on STM32F MCU. Finally, in Section IV, 
performance analysis and comparison of all three algorithms 
with respect to few important metrics are discussed and 
analyzed.  

 

II. OVERVIEW OF CLEFIA, PICCOLO, TWINE 
LIGHTWEIGHT BLOCK CIPHERS 

In this section, security and specifications of PICCOLO, 
CLEFIA, TWINE block cryptographic algorithms are examined. 

PICCOLO supports 64-bit block size with 80-bit and 128-
bit key sizes. Structure of PICCOLO block cipher is given in 
Figure 1. Algorithm is divided into data processing part and the 
key scheduling part. In data processing part, 64-bit plaintext, 
four 16-bit whitening keys and 2r 16bit round keys (r is the 
number of rounds) are used to encrypt the plaintext. The text is 
decrypted in a similar fashion with only changes made to the 
order of round keys and whitening keys selection. In each round, 
output of previous stage is permuted (shuffled on words of 8bits) 
and given as input to the next stage. 

 

Figure 1: Structure of PICCOLO [7]. 

“In Key scheduling part, Input key is divided into five 16-bit 
sub keys for 80-bit key size and eight 16-bit sub keys for 128-bit 
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key size which provides four 16-bit whitening keys and 2r 16bit 
round keys” [7]. 

Full PICCOLO80 and 28-round PICCOLO128 are 
susceptible to biclique attacks [5], and 14-round PICCOLO80 
and 21-round PICCOLO128 are susceptible to Related-key 
impossible diff attacks [6]. Therefore, 25 rounds for 
PICCOLO80 and 31 rounds for PICCOLO128 are suggested to 
be a sufficient security protection. Also, we make use of 
constants which will be XORed with round keys to overcome 
the self-similarity symmetry of round keys [7]. 

CLEFIA supports 128-bit block size with three different key 
sizes: 128-bit, 192-bit, 256-bits. Structure of CLEFIA is as 
shown in Figure 2. This algorithm is an ISO/IEC 29192-2 
standard lightweight crypto cipher [10] currently available. The 
basic building block of this algorithm is the GFN (d, r) where d 
denotes the data branch and r is round. Data processing part of 
the CLEFIA takes four 32-bit whitening key 2r 32-bit round key 
and 128-bit plain text for encryption. The two F-functions are 
used which are simple substitution and permutation (4x4 
diffusion matrix). 

Key scheduling part takes input key to derive the 
intermediate key. CLEFIA128 uses GFN(4,12) and 60 32-bit 
constants, CLEFIA192 uses GFN(8,10) and 84 32-bit constants, 
and CLEFIA256 uses GFN(8,10) and 92 32-bit constants 
respectively to generate intermediate key from the input key. 
These intermediate keys are updated every two rounds with the 
DoubleSwap function. Intermediate keys are expanded with 
input key to derive four whitening keys and 2r round keys [13]. 

 

Figure 2: Structure of CLEFIA [13]. 

Round-12,13,14 are susceptible to integral attacks whereas 
round-13,14,15 suffer from improbable differential attacks [11] 
[12]. So, round-18,22,26 are preferable for 128,192,256-bit key 
sizes to provide security against these attacks. Two S-Boxes are 
used to overcome the byte ordering saturation attack and 
algebraic attacks including XSL attack. Two different diffusion 

matrices are used to provide immunity against differential and 
linear attack [13].  

TWINE uses 64-bit block size and supports two key sizes: 
80-bit and 128-bits. In the data processing part of the algorithm, 
64-bit plain text, 36 32-bit round keys are taken to provide a 64-
bit cipher text. Round function of TWINE is very simple (Figure 
3) where in each round, eight F-functions are called which does 
simple XORing plaintext with sub key and applying 4x4 S-Box. 
Permutation (π) uses a more sophisticated approach to speed-up 
diffusion compared to CLEFIA which does simple circular shift. 
Here, only half of the circular shift rounds are required to diffuse 
to all sub blocks. Decryption in TWINE uses same S-Box, key 
schedule as encryption but the diffusion layer considered is the 
inverse of encryption [4]. 

In key scheduling part of TWINE, input key uses 35 6-bit 
constants to produce a 36 32-bit round keys. Key schedule of 
TWINE provides an on-the-fly operation of producing round key 
by sequentially updating its key state. By doing this hardware 
footprint reduces which conversely increase the performance. 
Since the round keys are updated sequentially there is no need 
for bit permutation or the intermediate key generation [9]. 

Full cipher TWINE80 and TWINE128 are susceptible to 
biclique attacks [8]. 23-round TWINE80 and 25-round 
TWINE128 suffer from zero-correlation attacks. Therefore, 36 
rounds for both the key sizes are recommended which gives 
acceptable security enhancement [9] [20]. 

 

Figure 3: Round function of TWINE [4]. 

 

III. LIGHTWEIGHT BLOCK CIPHER 
IMPLEMENTATION ON STM32F MCU 

This section provides information on how the mentioned 
ciphers were implemented on STM32 (ARM Cortex M4) 
microcontrollers. A brief introduction regarding the platform 
selected, how porting of the cipher is done and the software 
development tool used is given next. 

The platform specification considered for this project is 
ARM Cortex M4 which are a family of 32-bit RISC MCUs and 
uses ARMv7E-M architecture with 3 stage pipelining which 
result in an ideal average CPI (clocks per Instruction) of 1.67 
[21] [22]. Due to its high-energy efficiency (with low dynamic 
power and integrated software controlled sleep modes), 
performance, and inbuilt powerful trace technologies, ARM 
Cortex-M4 microcontrollers have reached a high popularity in 



cost sensitive embedded device requiring minimal area 
configuration [23]. 

 

Figure 4: STM32F4 MCU and ARM Cortex-M4[23]. 

Since the aim of this project is to implement lightweight 
block ciphers in IoT environments, STM32F401RE is 
considered as the target platform, which is specifically designed 
for these environments [24] [25] and supports the specifications 
mentioned in Table 1 [25]. 

Table 1: STM32F401RE Hardware Specification. 

Core ARM 32 Cortex M4 

CPU Frequency 84 MHz (84,000,000 cycles per 
sec) 

Flash Memory 512 KBytes 
SRAM 96Kbytes 

Security MPU (Memory Protection Unit) 
USB Type USB OTG FS 

Supply Voltage (V) max 3.6 
Supply current (per MHz) 137 (µA ) 

 

Implementations of the crypto algorithms which were written 
in C language were referenced [29][30],  and were initially 
ported and tested on the MCU. These tests were not successful 
as the referenced codes were found incompatible with our 
MCU’s firmware framework. These referenced codes were 
redesigned using embedded C++ language to shorten the size of 
the code, to achieve maximum performance and to implement 
the crypto algorithms (CLEFIA, PICCOLO, TWINE) on our 
MCU’s hardware. The code was also modified to analyze the 
performance metrics like memory efficiency, energy 
consumption, execution time, and throughput of the crypto 
cipher algorithms running on the MCU. Embedded C++ 
language is selected to implement the code among different 
available programming languages like Assembly, java and 
others, as it provides many appealing functionalities and 
characteristics. 

One of the most important characteristics of Embedded C++ 
language is that it is similar to the assembly language in terms of 
performance and code size. It is an efficient, fast and highly 
portable language [16] which is also easy to build and debug 
[18] [14]. Lightweight block cipher specifications with their 
block size and key sizes are shown in Table 2. 

Online mbed compiler and Keil uVision5 is used as the IDE 
to implement ciphers on STM32F4 MCU. They are open source 

and provides rich features of MCU environments. Online mbed 
compiler makes the coding portable and compiles the source 
code directly into binary files which can then be flashed directly 
on to the MCU by just click and drag [19]. Once the flash 
succeeds, the MCU flash drive will reload and the green light 
will be turned ON in the MCU. Keil uVision5 software is 
supported in Windows and provides a sophisticated full-scale 
debugger which can be used to monitor the serial port, perform 
data tracing and etc.  

Table 2: Lightweight Block Cipher Specifications. 

 Key Size Block Size # Rounds 

CLEFIA 
128 Bit 128-Bit 18 
192 Bit 128-Bit 22 
256 Bit 128-Bit 26 

PICCOLO 80 Bit 64-Bit 25 
128 Bit 64-Bit 31 

TWINE 80 Bit 64-Bit 36 
128 Bit 64-Bit 36 

 

 

IV. PERFORMANCE ANALYSIS & COMPARISION 

In this part of the section, we discuss a set of benchmark 
parameters like execution time, throughput of the encryption 
process, memory consumption, energy consumption which are 
used to calculate and determine which algorithm is best suited 
for IoT environments. We also provide information regarding 
how these are measured with respect to the STM32F4 MCU. 

Speed of the operation or the execution time is one of the key 
metric used to evaluate the performance of the block ciphers 
[27]. For this, timer function is used (provided by the mbed 
package) which is executed before the encryption operation and 
stopped after it finishes. In our analysis, for each block as the 
plaintext size increases, key schedule is also performed and 
included in the execution time. The results are tabulated and 
analyzed as follows. 

 

Figure 5: CLEFIA encryption execution time. 
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CLEFIA is executed for 128 bit, 192 bit, and 256 bit Keys 
for plaintexts of size 512 Bytes, 1024 Bytes, 2048 Bytes, and 
3072 Bytes and the average values were calculated and tabulated 
as shown in Figure 5. As we see, the encryption is increasing 
exponentially as the plaintext size increases. This is because the 
block cipher uses two feistal function and two diffusion 
matrixes. While the decryption follows a similar procedure with 
only changes made to the order of round keys and whitening 
keys selection. 

 

Figure 6: PICCOLO encryption execution time. 

In PICCOLO, the operational time for each key size and 
plaintext sizes are shown in Figure 6. Here, we observe the 
exponential raise of encryption time as the plaintext increases 
but when we compare two key sizes we can see more growth in 
128-bit key size. 

 

Figure 7: PICCOLO encryption execution time. 

Finally, TWINE lightweight block cipher is executed and the 
time taken to encrypt different plaintext sizes with respect to 
different key sizes are observed and provided in Figure 7 from 
this we can infer that for both keys, plaintext encryption varies 
by few milliseconds. This is because both the key sizes use same 
SBox and feistel function to encrypt. 

 

Figure 8: 128-bit key execution time comparison of ciphers. 

Figure 8, provides the comparison results of all three 
lightweight block ciphers with respect to 128-bit key encryption. 
We can see that PICCOLO128 is taking more time as the 
number of rounds is more compared to CLEFIA (Table 2) but 
even though TWINE is having more number of rounds but the 
encryption design is just the addition and permutation of 
plaintext and key sizes.  

 

Figure 9: 80-bit key execution time comparison of ciphers. 
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512 1024 2048 3072
80 Bit Key 9.112 18.243 36.192 54.337
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Figure 9 provides the comparison results of PICCOLO and 
TWINE with respect to 80-bit key size. TWINE encryption takes 
minimal time compared to PICCOLO for the same reason 
mentioned above. 

Energy consumption can be calculated in different ways [27]. 
In this paper, we consider one of the approach where CPUs 
operating voltage, average current drawn by each cycle in an 
encryption process is used to measure the energy consumption. 
For example, in the MCU that we considered, where the CPU is 
operating at 84MHz frequency, supply voltage of 3.6 volt, and 
average of 0.0115 Ampere current and if suppose 10000 clock 
cycles were assumed, then the energy consumed by an operation 
is 4.93 µA-sec or µ Joule. Following is the mathematical 
equation used to determine the consumed energy level by an 
encryption algorithm in this paper. 

E = I * N* τ * VCC 

Where I  is the average current in ampere, N is the number of 
clock cycles, τ is the clock period and VCC is the supply voltage 
[27].  

Table 3: Number of Clock Cycles for each cipher.  

Algorithms Key Sizes Clock Cycles 

CLEFIA 
128-bit 3,349,261 
192-bit 4,591,406 
256-bit 5,049,170 

PICCOLO 
80-bit 12,349,197 

128-bit 15,719,935 

TWINE 
80-bit 2,463,314 

128-bit 2,621,436 
 

Cortex M4 provides a Data Watchpoint and Trace (DWT) 
unit which can be used to trace and setup any benchmarks. By 
assuming there is a fixed energy consumption for each clock 
cycle we can get the total number of clock cycles executed for a 
function from the MCU’s inbuilt register DWT_CYCCNT by 
initializing as follows [26]: 

 

Table 3 provides the average clock cycles required to 
perform an encryption operation in each of the ciphers. Figure 
10 shows the amount of energy consumed by each of the block 
ciphers from different key sizes in µJoules per bits. Figure 
clearly shows that PICCOLO takes more energy to compute 
encryption as the number of clock cycles required to execute is 
more when compared to other ciphers. Conversely TWINE 

consumes least energy with only 1291.995 µJoules per bit and 
CLEFIA on the other side burns 1650.71 µJoules per bit when 
the key size of 128-bit is considered. With 80-bit key size we 
can see that TWINE performs exceptionally well with only 
1214.065 µJoules per bit and PICCOLO performs worst with a 
higher energy consumption of 6086.42 µJoules per bit. 

 

Figure 10: Energy usage comparison of ciphers. 

Memory compromises of the RAM which is used to execute 
programs and the flash memory (ROM) which consists of 
programming and data flash memory, where programming flash 
memory contains the program code for specific application and 
data flash memory stores any sensing data or temporary data like 
the look-up tables if present [15]. Online mbed IDE provides a 
good GUI based memory representation which is used to 
compare the memory allocation [17] of the specified block 
ciphers. Efficient usage of memory is the key role in IoT 
environments as this is directly related to the operational speed 
and throughput of the system. 

 

Figure 11: Memory usage comparison of ciphers. 
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Figure 11 gives the amount of memory needed by CLEFIA, 
PICCOLO and TWINE. TWINE requires little memory both in 
RAM and ROM as it has simple round function which does not 
store more lookup tables to fetch data often. But CLEFIA has 
less memory efficiency because it contains two different Feistel 
functions and two different SBox and diffusion matrix which 
causes more lookups to perform an encryption also since the key 
sizes used by the lightweight block cipher is more (128, 192, 256 
bits) compared to other two block ciphers it is reasonable to 
accept this high memory consumption as it provides more 
security (more the key size higher the security) [28]. Memory 
efficiency of PICCOLO is good compared to CLEFIA but worst 
when compared with TWINE, this is because even though 
PICCOLO takes two SBox layers both are just substitution 
operation and a permutation which is done with one diffusion 
matrix. So, TWINE is considered as the suitable lightweight 
block cipher where the memory constraints are high. 

Throughput is the metric used to measure amount of data a 
hardware system can ideally process in a given interval of time. 
In this paper, we calculate the throughput of each of the 
lightweight block ciphers to find out which stands best with 
respect to the resource constraint real world environment where 
encryption throughput becomes the key metric. To calculate the 
throughput, number of cycles taken by the encryption process is 
first calculated later this value is divided with the block size of 
the algorithm to get total encryption cycles per bit. 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑐𝑦𝑐𝑙𝑒𝑠/𝑏𝑖𝑡)  =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠

𝐵𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒
 

Since our MCU runs under 84MHz which means that there 
can be 84,000,000 cycles getting executed each second. So, the 
throughput of the encryption function of each lightweight bock 
ciphers is calculated as follows. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐶𝑃𝑈 𝑆𝑝𝑒𝑒𝑑

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑐𝑦𝑐𝑙𝑒𝑠/𝑏𝑖𝑡)
 

 

Figure 12: Throughput comparison of ciphers. 

Figure 12 reprints the value calculated for each of the 
lightweight block ciphers. We can see that CLEFIA (128, 192, 
256-bit keys) has the highest throughput with an average 
throughput of 4Kbps. Whereas TWINE (80, 128-bit keys) as a 
throughput of 4.99Kbps and PICCOLO has 0.6Kbps, this is 
because the number of clock cycles per bit required to perform 
an encryption operation in PICCOLO is more compared to other 
block ciphers and it is indirectly proportional to the throughput 
of the lightweight block ciphers. 

When we compare all three block ciphers with 128-bit 
encryption then CLEFIA stands first with 5Kbps as the number 
of clock cycles per bit required to compute an encryption is less, 
then TWINE stands second with 3.2Kbps and last PICCOLO 
with a throughput of 0.5Kbps. With 80-bit key encryption we 
can see that PICCOLO still stands at last with 0.6Kbps when 
compared to TWINE with 3.4Kbps. Since, PICCOLO has the 
least throughput we can say that there will be more delay and 
more energy spent to perform an encryption with real time 
application in an adhoc environment and therefore this 
lightweight block cipher is not a suitable candidate to be 
selected. So, we choose CLEFIA as the best choice. 

 

V. CONCLUSION 

Internet of things faces numerous challenges like bandwidth, 
security, privacy, power, scalability and many more among 
which privacy and security is the most important things to be 
considered in this environment as we cannot trust all the users in 
IoT. There are numerous crypto block ciphers available but due 
to resource constraints, lightweight cryptographic algorithms are 
chosen to be an ideal candidate for these environments. This 
papers provides a benchmark performance analysis on STM32F 
MCU with respect to energy consumption, throughput, execution 
time and memory consumption which plays an important role in 
choosing ideal lightweight block ciphers for resource 
constrained environments. When execution time or the operation 
time of an encryption function becomes the deciding factor for 
some applications like In-Vehicle devices, or the industrial 
control systems in an IoT environment then TWINE is the 
suitable candidate with key size of 80-bit, however when we 
consider 128-bit for more security [28] then CLEFIA turns out 
to be the suitable ciphers for small sized plaintext and as the size 
increases TWINE becomes the ideal candidate for encryption. 
Applications like RFID, sensor nodes, medical/healthcare 
devices etc. requires less memory consumption and less energy 
consumption so that the operational speed increases, TWINE is a 
best solution followed by CLEFIA which differs only by few 
metric units. In IoT environment, throughput matters a lot 
because higher the throughput lesser the delay and therefore 
hardware can spend less energy and later go into sleep mode 
which prolongs the battery power. CLEFIA is the best choice for 
encryption where higher throughput matters. 
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