UNIVERSITY OF CALIFORNIA

SANTA CRUZ

Listen:

A data sonification toolkit

A thesis submitted in partial satisfaction

of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Catherine M. Wilson

June 1996

The thesis of Catherine M. Wilson is

approved:

<signed> Suresh K. Lodha

<signed> Darrell D. E. Long

<signed> Ira Pohl

<signed> Ronald W. Henderson

Dean of Graduate Studies and Research

Copyright © by

Catherine M. Wilson

1996

Table of contents

11. Introduction

2. Sound
4
2.1. Definition
4
2.2. Properties of Discrete Sounds
4
2.2.1. Frequency
4
2.2.2. Amplitude
5
2.2.3. Location
5
2.2.4. Timbre
6
2.2.5. Envelope
6
2.2.6. Environmental Effects
6
2.3. Properties of Sound Sequences
6
2.4. A Proposed Sound Model
6
2.5. Sound Hardware
6
2.6. Sound Software
6
3. Why Use Sound?
6
3.1. Alarms and Monitors
6
3.2. Everyday Sounds
6
3.3. Pattern Recognition
6
3.4. Encoded Messages
6
3.5. Problems with Sonification
6
4. Previous Work
6
4.1. Early Experiments in Sonification
6
4.1.1. Pollack and Ficks: Can Sound Convey Information?
6
4.1.2. Speeth: Distinguishing Earthquakes from Bomb Blasts
6
4.1.3. Yeung: Sonifying Experimental Data from Analytical Chemistry
6
4.1.4. Bly: Classifying Multidimensional Data
6
4.1.5. Mansur: Sonifying Graphs
6
4.2. Sonification for Data Exploration
6
4.2.1. Mezrich, Frysinger and Slivjanovski: Listening to the Stock Market
6
4.2.2. Lunney and Morrison: Sonifying Data for the Visually Impaired
6
4.2.3. Rabenhorst et al.: Sonifying Multidimensional Data
6
4.2.4. Brown: Sonifying Sorting Algorithms
6
4.2.5. Blattner, Greenberg, and Kamegai: Listening to Turbulence
6
4.2.6. Jameson: Debugging With Sound
6
4.2.7. Minghim and Forrest: Sonifying Surface Data
6
4.3. General Sonification Systems
6
4.3.1. Smith, Bergeron, and Grinstein: EXVIS
6
4.3.2. Scaletti: Developing Prototype Sonification Tools Using Kyma
6
4.3.3. Astheimer: The apE Visualization System
6
4.3.4. Madhyastha and Reed: Porsonify and Pablo
6
5. Listen
6
5.1. The Objectives
6
5.2. The Platform
6
5.3. The Design
6
5.4. The Modules
6
5.4.1. The Interface Module
6
5.4.2. The Control Module
6
5.4.3. The Data Manager Module
6
5.4.4. The Sound Mapping Module
6
5.4.5. The Sound Device Module
6
5.5. The Listen Toolkit
6
5.5.1. Listen 1
6
5.5.2. Listen 2
6
5.5.3. Listen 3
6
5.5.4. Listen 4
6
5.6. Attributes of Listen
Error! Bookmark not defined.
5.7. Programming Details of Listen
6
5.7.1. The Interface
6
5.7.2. The Class Structure
6
6. Applying Listen to Uncertainty Visualization
6
6.1. Surf: A Surface Comparator
6
6.2. UFLOW: A Flow Visualizer
6
7. Conclusions
6
A. User’s Guide
6
A.1 Installation
6
A.2 Listen 1
6
A.3 Listen 2
6
A.4 Listen 3
6
A.5 Listen 4
6
A.6 Transfer Function Utility
6
References
6

List of Figures

6Figure 2‑1 TBP Sound Model

Figure 5‑1 The Listen Modules
6
Figure 5‑2 User Interface of Listen 2
6
Figure 5‑3 User Interface of Listen 3
6
Figure 5‑4 User Interface of Listen 4
6
Figure 6‑1 User Interface of the Listen Module in Surf
6
Figure 6‑2 Grid of glyphs in Surf
6
Figure 6‑3 User Interface of UFLOW
6
Figure 6‑4 User Interface of the Listen Module in UFLOW
6

Listen:

A data sonification toolkit

Catherine M. Wilson

ABSTRACT

Data sonification is the representation of data using sound. Although data sonification has been a subject of research for the last fifteen years, much remains to be learned about how data should be mapped to sound, what constitutes a good mapping, what kinds of data can be meaningfully sonified, what attributes of data can be meaningfully sonified, and how sonification should be combined with visualization. On the basis of the work done so far, the expectation is that sonification will be used routinely in scientific visualization in the not too distant future. In order to encourage the incorporation of sonification into the research environment, a flexible, adaptable, extensible, portable, and interactive toolkit is needed.

A primary goal in the design of Listen was to provide such a toolkit for use in exploring data of any type. Listen is an object-oriented, modular system. Listen provides incremental functionality; researchers can begin using sonification with a minimum investment of time and resources, and once sonification has proven its value, can implement more sophisticated capabilities. Listen can be easily adapted by the user to a particular environment and extended when additional functionality is required. A key feature of Listen is that it can be easily incorporated into an existing visualization system.

Keywords: sonification, data sonification, audio, auditory display, scientific visualization

Acknowledgements
I would like to thank Dr. Suresh Lodha, my advisor, for his excellent advice and direction, and for his encouragement and enthusiastic support.

I would also like to thank the other members of my committee, Dr. Darrell Long and Dr. Ira Pohl, for their valuable assistance.

Thanks also to Tara Madhyastha for making her sonification system, Porsonify, available to me and for helping me to get it up and running; Bob Sheehan for the use of Surf, his surface comparator visualization program, and for testing the Listen module in Uflow, his fluid flow visualization program; Jonathan Gibbs for the use of his transfer function library and for always having the right answer, whatever the question; Joseph Russack for his substantial contribution to the original design of the Listen software package and for his friendship; Paul Tarentino for helping me to understand digital audio; and Gints Klimanis of SGI for helping me with the intricacies of SGI’s audio and MIDI libraries.

This work is dedicated to the memory of my mother, Mary D. Wilson, who would have loved to see this day.

1. Introduction

Data sonification is the representation of data using sound. Scientific visualization is defined as the graphical representation of data; data sonification is its aural equivalent.

Sound has a number of unique properties that can be exploited for displaying data. Sound attracts attention; even if one’s attention is directed elsewhere, the auditory channel is always open. Used in conjunction with visualization, an auditory display can provide relief for the overloaded visual channel in the presentation of multivariate data. As an inherently temporal phenomenon, sound is by its nature appropriate for representing time-varying data. Sound can reveal patterns, or auditory signatures, in the data.

Sound can also help to overcome deficiencies in a visual display. Distortion of graphical objects resulting from projection can prevent their relative sizes from being easily distinguished. It is often the case that the size of an object is proportional to some data value. In this case, the use of sound can permit more accurate quantification of the data. In cases where part of the visual display is occluded, sonification of data values allows them to be perceived even though their visual representation is hidden.

The earliest sonifications simply involved the direct playback of data, either as an analog waveform or as digital audio. This technique is generally referred to as auralization or audification [Stuart, 1995] [Kramer, 1994]. Depending upon the nature of the data, auralization may or may not be a useful technique for displaying data. Seismograms, radio-telescope data and equation-generated waveforms are examples of the kinds of data that lend themselves to auralization [Speeth, 1961] [Kramer, 1994].

A much more useful technique of data sonification, and the one employed in this work, is the mapping of data values to properties of sound. This technique is analogous to mapping data values to color or other properties of light in a visualization. Properties of sound such as pitch, volume, and duration are intuitively interpreted in terms of magnitude. Other properties of sound such as timbre, location, and some aspects of the sound envelope can represent qualitative aspects of data. The term sonification is defined as the mapping of data to some property or properties of sound.

Because the idea of sonifying data is relatively new, a great deal of work still needs to be done. Open questions include how data should be mapped to sound, what constitutes a good mapping, what types of data can be meaningfully sonified, what attributes of data can be meaningfully sonified, and how sonification can be combined with visualization.

Much of the work done so far has involved the application of sonification to particular problem domains. The few general sonification systems that have been created have had limited success for a number of reasons. The system designed by P. Astheimer as an extension of the apE visualization system limits the user to implementing a visualization on that system [Astheimer, 1993]. Carla Scaletti’s Kyma system requires exotic sound hardware [Scaletti, 1993]. The EXVIS system, which is limited to a two-dimensional iconographic visual display, is not sufficiently general or flexible [Grinstein and Pickett, 1989]. The Porsonify system designed by Madhyastha and Reed is an excellent system whose chief drawbacks are that it is awkward and complex to use and is difficult to learn [Madhyastha and Reed, 1995]. We shall discuss these systems in detail in Section 4.3.

The primary goal in the creation of Listen was to provide a truly useful set of basic tools that will encourage the incorporation of sonification into the research environment. To achieve this goal, Listen is:

· general,

· flexible,

· intuitive,

· interactive,

· adaptable,

· extensible,

· portable, and

· implemented on easily available and inexpensive hardware.

Refer to Section 5.6 for details on these attributes of Listen.

Listen was written for the SGI platform, which is commonly used for scientific visualization. It utilizes SGI’s audio and MIDI libraries and works with the SGI internal audio chip or a MIDI device or both. In order to support and encourage experimentation, Listen’s graphical user interface is highly interactive and intuitive. The expectation is that once the value of sonification has been established in a particular research environment, new ways of sonifying data will suggest themselves. Listen has been structured in such as way as to make extending its functionality as easy as possible. Because of this aspect of the design, porting Listen to other platforms should also be straightforward. A key feature of Listen is that it can be easily incorporated into any existing visualization system.

Chapter 2 discusses the properties of sound and the hardware and software required to implement sound on the computer. Chapter 3 discusses the advantages and disadvantages of using sound for the display of data. Chapter 4 provides a summary of previous work on sonification. Chapter 5 presents Listen, its design and implementation. Chapter 6 discusses the results obtained by incorporating Listen into two visualization programs. Chapter 7 presents our conclusions. Appendix A contains the user’s guide to Listen.

2. Sound

2.1. Definition

Sound is essentially a pressure wave propagated through some medium. Usually we think of the propagation medium as air, but sound can also propagate through water, glass, walls, and other media. A source initiates a sound wave by creating a vibration of sufficient magnitude to cause the surrounding air molecules to vibrate. This vibration creates a wave that travels through the air in the same way that ripples travel through water. If the sound wave encounters a transducer, such as an eardrum or a microphone, it will cause the transducer to vibrate at the same frequency as the sound wave. We perceive these vibrations as sound.

2.2. Properties of Discrete Sounds

Every discrete sound consists of a number of components, each of which is largely independent of the others. These components include frequency, amplitude, location, and the characteristics of the sound envelope. A sound can be made up of periodic and aperiodic frequencies. It can be made up of any number of frequencies, provided they are in the audible range, from about 50 Hz to 20,000 Hz. Each frequency can be of a different magnitude. A sound can be spatially located. A sound’s envelope can be of any shape and may or may not contain effects like vibrato and tremolo. The sound’s environment may change the way any particular sound is perceived.

2.2.1. Frequency

Sound may consist of vibrations of one or more frequencies. The perceived pitch of the sound is related to its frequency. The higher the frequency, the higher the pitch. Sound may also be created by vibrations that are not periodic and thus have no perceived pitch, or a sound may have periodic and aperiodic components. The difference between speaking and singing is related to the number of periodic components present.

Noises created by the everyday environment are generally aperiodic. We may perceive them as high or low because we are able to estimate their average or mean frequency. This perception of frequency comes from the human auditory system, not from the nature of the sound itself [Braut, 1994].

The relationship between frequency and pitch is logarithmic. In musical terms, in a one-octave interval, the frequency of the highest note is exactly twice the frequency of the lowest note. Doubling the frequency of a note produces a note one octave higher. Doubling that frequency produces a note two octaves higher than the original note.

2.2.2. Amplitude

The amplitude of a sound wave is perceived as loudness, or volume. Human hearing has a large dynamic range. The sensitivity of human hearing to increases in sound strength is logarithmic. To double the perceived loudness of a note, the sound strength of the louder note must be the square of the sound strength of the softer note [Braut, 1994].

Loudness is measured in units called decibels. Doubling the amplitude of a sound increases the loudness by 3 db and is perceived as only a slight increase. To double the perceived loudness of a sound, the strength of the sound must be increased by 10 db [Ridge et al, 1994].

2.2.3. Location

The location of a sound source can be determined from the slight difference in the time of arrival of the sound at each ear. This capability allows us to determine the direction and approximate distance of a sound source.

2.2.4. Timbre

The timbre of a sound refers to the frequencies that are present in the sound and their relative magnitudes. A sine wave consists of a pure tone of just one frequency. No musical instrument or human voice produces a simple sine wave. When a note is sung or played on a musical instrument, a fundamental tone, or frequency, is produced that predominates, but it is the harmonics, or multiples of the fundamental frequency, and other frequencies that may be present, that give an instrument its distinctive voice. The timbre is what makes a violin sound different from a trumpet. It is what makes Kathleen Battle sound different from Luciano Pavarotti.

2.2.5. Envelope

Different sound sources create sounds with distinctive temporal properties. The human speaking voice has little sustain because the vibration of our vocal chords stops suddenly when we stop speaking. A guitar string, on the other hand, continues to vibrate for some time after it is struck, and the sound will continue for as long as the vibrations continue.

The way a sound changes over time defines its envelope. Attack refers to the rate at which the amplitude of a sound rises once it has been initiated. Striking a piano key results in an attack with a short, steep attack curve, but bowing a violin results in a longer and more gradual attack curve. Sustain refers to the length of time the sound continues at approximately the same amplitude. Decay refers to the rate at which the amplitude of a sound decreases. A sound that diminishes very gradually is said to have a long decay rate.

During the sustain phase of the sound envelope, a slight, periodic variation in frequency can modulate the sound. This effect is called vibrato. Tremolo creates a similar effect, but usually results from small changes in volume. Both vibrato and tremolo are very small features of the overall envelope, but they affect the character of the sound.

Some sound properties result from manipulating the sound envelope of a natural sound. Damping refers to the intentional attenuation of a sound by stopping the vibration of its source before the sound can die away naturally.

2.2.6. Environmental Effects

Some properties of sound relate to the environment, like reverberation and echo. Sound waves may reflect off of hard objects, creating waves that reach our ears shortly after the waves that reached us directly. If a room is filled with sound-absorbing materials, few reflections will be created and the sound will appear dull and muffled. A room with mostly hard surfaces will generate many reflections. A highly reflective environment may create so much reverberation that the sound becomes unintelligible.

2.3. Properties of Sound Sequences

The generation of a sequence of sounds introduces a number of new properties. Just as we do not examine words in a sentence one by one, so we do not perceive each sound of a sequence in isolation from the others. The transition between the sounds can be blurred as in glissando, which refers to a sequence of increasing or decreasing pitches in which every note is sounded. The duration of each sound in a sequence can vary; regular relationships between the duration of sounds can produce a beat, or rhythm. Variations in the volume of notes in a sequence can ``color’’ the sound, as emphasis and verbal phrasing color spoken language.

2.4. A Proposed Sound Model

In 1994, Stephen Barrass introduced a sound model inspired by color theory. Starting with the HSL color model, he devised an analogous sound model. This was the first attempt to formalize a definition of a perceptually uniform sound space.

The HSL color model uses the subjective color dimensions of hue, saturation and lightness to define a color space. These dimensions correspond to the physical properties of wavelength, spectral content, and intensity. The color space is cylindrically structured, with the vertical axis representing lightness, the radius representing saturation, and the angle, or position around a cross-section of the cylinder, representing hue. The appearance of a color may be varied by changing each dimension independently.

[image: image1.png]
Figure 2‑1 TBP Sound Model

Barrass’ sound model is also cylindrically structured, with the hue circle becoming the timbre circle, the saturation radius becoming the brightness radius, and the lightness axis becoming the pitch axis. The timbre circle may be any one of several timbre circles based on work by von Bismarck, Slawson, and Grey [von Bismarck, 1974b] [von Bismarck, 1974a] [Slawson, 1968] [Grey, 1975] . A timbre wheel consists of eight timbres, with opposite timbres being most unlike and adjacent timbres most alike [Barrass, 1994a]. Brightness refers to the number of upper harmonics present in a sound. Pitch refers to frequency [Barrass, 1994b].

Just as the HSL color model helps to define the attributes of a color, the TBP (timbre, brightness, pitch) sound model attempts to define the attributes of a sound. The basic idea is that any particular sound can be identified with a place in the sound space defined by the model. Just as some color models cannot represent every possible color, a sound model may not include every possible sound.

The use of a sound model can help to standardize the capabilities of sound display equipment. Just as each color monitor has a gamut of colors that it is able to display, each sound device also has a gamut of sounds that it can display. The use of a model also helps to standardize sounds used in sonifications. Identifying a sound with a particular location in a sound model ensures that a particular data value will always produce a particular sound.

In 1995, Stephen Barrass and Philip K. Robertson used the idea of a perceptual sound space to analyze mapping schemes for data sonification [Barrass and Robertson, 1995]. In order to test the validity of his sound model, Barrass developed the sonification system, Personify [Barrass, 1995]. Implemented on a Sun Sparcstation10 using Csound signal processing software and samples of musical instruments, Personify was designed with the goal of enabling non-experts to create perceptually meaningful sonifications. It addresses psychoacoustic, perceptual, and representational aspects of sonification. The usefulness of this sound model has yet to be thoroughly tested on scientific visualization tasks.

2.5. Sound Hardware

Every attempt to implement data sonification has had to overcome a number of difficult problems. The lack of appropriate sound hardware and the lack of standardization of the hardware has always been an issue. Until recently, the implementation of a data sonification system has required a large investment of both time and resources because of the lack of audio support on most platforms.

In order to create sonifications in real time, some method must be found to generate sounds in real time. Sound files can be played back fairly easily, but the ability to control the characteristics of the sound produced is very limited. A computer can implement a sound synthesis algorithm, but doing so in real time is difficult. Music synthesizers were created to perform real-time sound synthesis, but with the needs of musicians in mind, not the needs of scientists. Since synthesizers perform hardware synthesis, they are fast, but not very flexible. Software synthesis is flexible, but not very fast.

Many computers, including the SGI workstation, the Sun SparcStation, and the PC, contain internal audio devices. These sound devices were intended to play pre-recorded digital samples in a multimedia environment. It is possible to manipulate them directly in order to create sounds for sonification, but in the absence of sound libraries, this manipulation must be done via low-level device drivers.

External devices exist that provide great flexibility in sound synthesis through the use of digital signal processors (DSPs). Carla Scaletti used such a device, the Capybara, in her sonification system, which will be discussed in Section 4.3.2. The problem with these devices is that they are not commonly available and their interface with the computer is not well defined. Implementing a sonification system with this type of device involves knowledge of sound synthesis algorithms and familiarity with synthesis hardware.

Since the advent of multimedia, the ability to add a MIDI device has been implemented on many platforms, including the Macintosh, the Sun SparcStation, the SGI, and the PC. MIDI devices add a great deal of functionality to a system’s sound-generation capability. MIDI is an evolving standard that allows the equipment from different manufacturers to work together in a reasonably consistent way. Sound properties like pitch and volume are controlled by standard MIDI messages. General MIDI imposes some standardization on the correspondence between instrument voice numbers and the voices they generate, so that a piano voice on a Korg device will also be a piano voice on a Roland device.

Devices from a particular manufacturer also have proprietary messages that they respond to. Some devices allow manipulation of aspects of the sound envelope while others do not. Each device may have unique messages that accomplish various tasks. It is necessary to obtain information about proprietary messages from the manufacturer. The lack of standardization in proprietary messages can be a problem in sonification.

The use of MIDI devices remains controversial. MIDI devices are musical instruments and the control they allow over the sounds they produce is usually dictated by the needs of musicians. Most modern synthesizers use wave-table synthesis, which uses samples of sounds made by analog instruments. Sampling produces sounds that are much more faithful to the sound of the analog instrument than FM synthesis, but at the cost of sacrificing some control over the characteristics of the sound.

The advantages of MIDI devices, however, are many. They are abundant and inexpensive, and many computers have the capability of controlling them. By using MIDI messages, many sound parameters can be easily controlled. The pitch, volume, and duration of a note and the timbre used to sound it are all controlled by standard MIDI messages. Modern synthesizers allow many notes to be played simultaneously and most allow control of stereo balance. If more control of the sound envelope is needed, proprietary messages can be used if the device supports them.

The ideal hardware device would allow all the properties of sound to be manipulated independently. Complete control of timbre would be possible by allowing the exact frequencies used and the magnitude of each to be individually controlled. Direct control over the sound envelope and over sound sequencing would also be possible. Control of the device would be implemented by high-level libraries and would require no special knowledge of synthesis algorithms or sound hardware. Such a device would work on any computer platform. In order to achieve standardization, all scientists using sonification would have one. Therefore, the ideal device would be mass produced and inexpensive. Since there is little motivation for manufacturers to produce such a device, however, it is unlikely that it will be available any time soon.

SGI’s next operating system, Irix 6.2, will include a software synthesizer, which may allow much greater control over sound than external devices currently support. As more interest in multimedia and virtual reality encourages the development of sound applications, greater control over sound devices should become possible. Before we bemoan the lack of an ideal system, we should encourage the use of available systems in order to reap the benefits of sonification that are now easily within reach.

2.6. Sound Software

The availability of sound libraries greatly simplifies the task of implementing a sonification system. A great deal of the burden of writing software for sound devices is lifted by the use of such libraries. SGI workstations have an audio library to control the internal audio device and a MIDI library to control an external MIDI device. The Apple Macintosh has the 'MIDI Management Tool Set,' which is essentially a MIDI library. The advent of multimedia should encourage the development of sound libraries for more platforms.

The use of sound libraries makes it easy to abstract the functionality of a sonification system from communication with the hardware. The design of a sonification system can be focused on implementing the production of meaningful sonifications, not on the mechanics of making the sounds.

The Porsonify system created by Madhyastha and Reed was implemented on the Sun SparcStation without the support of sound libraries, which made the task much more difficult and resulted in a system that was complicated to use and difficult to learn [Madhyastha, 1992]. See section 4.3.4 for details of the Porsonify system.

Listen is implemented on the SGI platform and uses both the audio and MIDI libraries to control the sound hardware. The use of these libraries makes it easy to extend the functionality of the program by increasing the understandability of the interface to the sound hardware.

3. Why Use Sound?

The auditory system excels at certain tasks.

Carla Scaletti, 1991

3.1. Alarms and Monitors

In considering how sound can provide meaningful information about data, we should consider how sound provides meaningful information in everyday listening. William Buxton points out that humans have highly developed listening skills [Buxton, 1990]. We depend upon our hearing to give us essential information about our environment. It is difficult to pay visual attention to all of our surroundings at once, but hearing helps us to determine where to direct our attention and informs us when there is an event that we should pay attention to. Hearing provides a monitoring function that is always active.

Hearing has the important capability of informing us of changes in our environment. We are able to tune out steady-state sounds, but we are instantly aware of any change in a sound. The sound of a washing machine fades into the background, but we notice immediately when it stops [Buxton, 1990]. Much of our interaction with the world depends on auditory feedback. We know when to shift an automobile from the sound of the engine.

Alarms and status messages, already used in the human-computer interface, exploit our hearing capabilities to provide error indicators and notification of interesting events when applied to the sonification of data. Error conditions may be difficult to detect visually, even if we are paying attention, but an audible warning is difficult to miss. Searching time-series data for a particular condition or event is tedious if we have to monitor the data visually. By exploiting our ability to monitor sounds and changes in sounds, even while our attention is directed elsewhere, displaying this kind of data aurally reduces the risk of missing something through sheer boredom and frees our eyes for other things.

The possibility of overlooking some feature of visually displayed data provides another motive for using sound. Vision requires that we direct our attention to something before we can be aware of it. Sonifying data values presents all of the data to the listener and can possibly direct the listener’s attention to interesting areas of the visual display that had gone unnoticed.

3.2. Everyday Sounds

We are able to extract information about the cause of a sound from the sound itself. We can often obtain information about the size of an object and the material it is made of from the sounds it produces. William Gaver investigated how subjects describe sounds and confirmed that sounds are identified and described in terms of their source. When we hear everyday sounds, we are not explicitly aware of the properties of the sound. We hear the properties of the object that caused the sound. We do not hear the frequency or the amplitude of the sound of a door closing; we hear the material the door is made of and the force used to close it [Gaver, 1989].

The term auditory scene analysis has been applied to the complex process of analyzing the information that hearing gives us about our environment. Auditory scene analysis includes how we group sounds into meaningful ``objects’’ and build mental descriptions of events [Bregman, 1984] [Scaletti, 1993] [Stuart, 1995].

An interesting observation is that everyday sounds are naturally multidimensional. They provide information about many attributes of the objects that caused the sound. Sounds provide information about both the physical nature of their source and the nature of the action that produced the sound [Gaver, 1989].

The use of sound samples that could be played back as needed may have some advantages that the technique of mapping data to sound parameters does not. Everyday sounds are intuitively understood; they require no learning for most people to grasp their meaning. The sound of a door opening could stand as a metaphor for the opening of a data file. Understanding how to map data values to everyday sounds, however, is difficult. Nevertheless, the possibility should not be overlooked.

Although much of the work done so far has involved the use of sound properties like pitch, the use of everyday sounds to convey information about data has also been considered. Much of the research regarding human perception of everyday sounds is motivated by the use of auditory icons in the human-computer interface. Auditory icons can give additional information about the user’s interaction with the computer. For instance, dragging a file from one place to another could be accompanied by a sound, the nature of which would communicate the size and type of the file. Gaver suggests that auditory icons be used to represent dimensional data, with the magnitude of a value being represented by the size of some virtual object whose sound is associated with the data value. The source of sound would stand for the source of the information [Gainer, 1986].

3.3. Pattern Recognition

One of the most complex and impressive of our hearing abilities is our skill at pattern matching and recognition. Music and speech recognition depend upon this ability. Our ability to discriminate between a very large number of complex speech sounds and to detect the patterns that denote words and phrases is quite remarkable, and our ability to detect patterns also enhances our ability to remember sounds.

The fact that auditory signatures have been discovered in some types of data shows that our pattern matching ability can be exploited in sonifying data [Speeth, 1961] [Brown, 1992]. Detection of auditory patterns has the potential of revealing characteristics of data that cannot be discovered visually.

3.4. Encoded Messages

The use of encoded messages to convey information about data is potentially the most useful but also possibly the most problematic sonification technique. The nature of encoding implies that some kind of decoding must take place before the message can be understood.

Encoding refers to mapping a data value to some parameter of sound. Pitch, volume, and duration are intuitively perceived in terms of magnitude. Mapping data to these properties of sound allows a listener to perceive increasing and decreasing data values as increases and decreases in the pitch, volume, or duration of sounds.

Sound also has properties that, while they are less useful for quantitative mappings, can represent qualitative aspects of data very well. Spatial properties of data can be mapped to the location of sound. For hardware that is capable of playing stereo audio signals, spatial properties can be mapped to stereo balance. Three-dimensional sound systems and virtual reality systems are capable of even more complex representation of spatial properties.

Representing increasing data values with increasing pitch or volume seems reasonably intuitive, but more complex mappings, particularly of multivariate data, may be much more difficult to interpret. In spite of the difficulties involved, the use of encoded mappings in multivariate displays has been found to be valuable. In many applications, the ability to display a large number of variables concurrently is very important. Graphical techniques of displaying multivariate data are limited in their ability to represent a large number of variables before visual clutter destroys the usefulness of the display. The addition of sonification to graphical displays allows more aspects of the data to be presented simultaneously without creating confusion.

The use of timbre, or instrument voices, provides more possibilities for qualitative mappings. Timbres can be selected that reinforce the nature of the data, such as using kettledrums for seismic data. Alternatively, a timbre may be selected that provides a contrast to the nature of the data. Using different timbres may bring out different features of the data and can be easily implemented using a MIDI device. The ability to choose an instrument with which to play a data stream can also improve an auditory display. By selecting different timbres to represent different data streams, it is possible to listen to the data streams concurrently while being able to distinguish one from the other.

In addition to the first-order properties of pitch, duration, volume, location, and timbre, the second-order properties of attack and decay rate, sustain, tremolo, vibrato, glissando, rhythm, and echo provide more subtle ways of creating a sonification. By using both first-order and second-order properties, a sonic environment may be created in which it may be difficult to monitor the changing data values themselves, but which, taken as a whole, conveys a texture whose meaning is greater than the sum of its parts.

3.5. Problems with Sonification

While there are certainly many advantages to using sound for data display, there are also disadvantages that must not be ignored.

Sonifications that produce chaotic and unmusical sounds, while they may still be useful, can be hard to listen to. Auditory fatigue may reduce the ability of a listener to recognize the information conveyed by a sonification.

Just as in graphical displays one object can mask another, so can one sound mask another. A predominating timbre, or volume differences between data streams, may render a portion of the sonification undetectable.

Some sound properties may make others undetectable. If the duration of a note is too short, we may not be able to perceive its pitch.

Sounds may interact with each other, producing unintended and confusing effects. Properties of sounds may also interact. Since high pitches appear louder than low pitches, the use of volume with pitch in a multivariate mapping should be avoided.

4. Previous Work

4.1. Early Experiments in Sonification

Much of the early work in sonification concerned discovering whether or not auditory data displays are effective. When sound was actually used for data analysis, it was usually done because nothing else worked.

4.1.1. Pollack and Ficks: Can Sound Convey Information?

In 1954, I. Pollack and L. Ficks investigated the ability of sound to convey information. They tested subjects’ ability to extract information from sonic displays using alternating tones and noise. Eight variables were represented as parameters such as frequency, volume, note duration, display duration, apparent location, and ratio of tone to noise. The results indicated that displays using multiple parameters of sound were more effective than unidimensional displays [Pollack and Ficks, 1954] [Frysinger, 1990].

4.1.2. Speeth: Distinguishing Earthquakes from Bomb Blasts

In 1961, S.D. Speeth, attempting to discover ways to discriminate between earthquakes and underground bomb blasts, sped up data obtained from his seismometer so that its frequency would be audible and played it back. Subjects were able to identify the cause of the sound correctly 90 percent of the time. Although the two sounds could not be distinguished from each other visually from the seismometer data, each produced a unique auditory signature. An added benefit was that speeding up the data allowed data from a 24-hour period to be listened to in about five minutes [Speeth, 1961] [Frysinger, 1990].

4.1.3. Yeung: Sonifying Experimental Data from Analytical Chemistry

In 1980, E.S. Yeung, a chemist interested in sound as an alternative to graphical displays, sonified vectors whose values represented levels of various metals in a mineral sample. He classified each sample as belonging to one of four sets, using as sound parameters frequency, intensity, damping, direction (left to right), duration/repetition, and rest. His subjects were able to correctly classify 90 percent of the samples. With training, their accuracy reached 98 percent [Yeung, 1980] [Frysinger, 1990] [Smith et al., 1990].

4.1.4. Bly: Classifying Multidimensional Data

In 1982, Sara Bly at the University of California at Davis tested subjects’ ability to classify a data point as belonging to one of two six-dimensional data sets. The sound parameters that she used were frequency, intensity, duration, waveshape (from sine wave to noise), attack envelope, and fifth and ninth harmonics. She demonstrated that an auditory display is as effective as a visual display, and that a combined auditory and visual display is more effective than either auditory or visual alone.

She also conducted experiments that tested display techniques using multivariate, logarithmic and time-varying data. The multivariate data described different species of iris by four measurements of the plant’s petals and sepals. This four-dimensional data could be correctly classified in all but a few cases. Bly discovered that displays utilizing the logarithmic relationship between frequency and pitch worked well in revealing features of seismic data. The time-varying data described a simulated battle. Subjects were able to discover the outcome of the battle, although they could not follow the individual actions of each side [Bly, 1982] [Frysinger, 1990].

4.1.5. Mansur: Sonifying Graphs

In 1984, D.L. Mansur at the University of California at Davis tested the ability of subjects to interpret x-y plots using a time-varying pitch. He discovered that, with some training, they were able to discriminate features of the data such as linearity, monotonicity, and symmetry from 79 to 95 percent of the time [Mansur, 1984] [Mansur et al., 1985] [Frysinger, 1990].

4.2. Sonification for Data Exploration

Much of the sonification of real data has involved multivariate displays. Sonification has also been used to provide data displays for the visually impaired. There is further evidence that certain kinds of data can produce auditory signatures, and the ability of sound to augment and reinforce visualizations has been confirmed. It is interesting to note the diversity in the properties of sound used and the ways of mapping the data employed in each sonification.

4.2.1. Mezrich, Frysinger and Slivjanovski: Listening to the Stock Market

In 1984, J.J. Mezrich, S.P. Frysinger, and R. Slivjanovski developed multivariate time-series displays using both graphics and sound. Time-series plots are often used in the decision making process. Usually, variables are displayed either stacked or overlaid on an x-y plot, with the x axis representing a time line. Mezrich et al. developed their display for oil well log data. Since such data is generally proprietary, they plotted economic indicators in order to determine the effectiveness of their display. A single indicator is relatively meaningless, but taken together they can convey interesting information about the state of the economy and possibly its direction. Because there are a large number of these indicators, visual displays that incorporate many of them become cluttered. In order to reduce the visual clutter, sound was incorporated into the display.

Each variable was represented by a particular voice, or timbre. The values of the variables were mapped to pitch. The analyst could focus on a subset of the data by interactively brightening or muting individual variables and could play the data both forwards and backwards. Subsets of the data could be saved and juxtaposed to each other, in order to compare areas where the data might be similar.

The effectiveness of the sonified display was compared to three static visual displays. In almost every case, the sonified display performed as well as or better than the static displays [Mezrich et al., 1984] [Frysinger, 1990].

4.2.2. Lunney and Morrison: Sonifying Data for the Visually Impaired

In the late 1980’s, D. Lunney and R.C. Morrison of East Carolina University tried using auditory displays to convey information about molecules to visually impaired chemistry students. The students were able to identify the molecules from sonically encoded information about their infrared spectra. Pitch represented the frequency location of an infrared peak and note duration was proportional to the intensity of the peak. Notes were played in ascending and descending order, and then as a chord. Using these sonifications, the students were able to identify twelve organic compounds [Lunney and Morrison, 1990] [Frysinger, 1990] [Smith et al., 1990].

4.2.3. Rabenhorst et al.: Sonifying Multidimensional Data

In 1990, Rabenhorst et al., of the IBM Research Division and General Technical Division, used sound as an additional perceptual channel to represent multivariate data. Using data obtained from a simulation that computed attributes of a semiconductor, they attempted to design a sonification that would complement a visual display and to use sound in an intuitive way. The visualization allows the user to manipulate a cursor within a three-dimensional solid. As the cursor moves, the corresponding data point is sonified. The attributes chosen for sonification consisted of signed values, which were mapped to both detuning and stereo balance. The stereo perception of the sound communicated the sign and approximate value. The detuning of a 3-note chord provided redundant information about the sign and a more accurate idea of the magnitude of the value. Each note of the chord was also assigned its own timbre. The resulting sonification allowed local minima and maxima to be easily found, and correlations between attributes of the data were discovered [Rabenhorst et al., 1990].

4.2.4. Brown: Sonifying Sorting Algorithms

In 1992, Marc Brown of DEC Systems Research Center in Palo Alto, California, applied ‘audiovisualization’ to sorting algorithms. Brown animated algorithms in order to understand their behavior and to analyze their design. His Zeus algorithm animation system animates and sonifies interesting events that occur during the execution of an algorithm.

Brown used sound in three ways: to reinforce the visualization, sonifying data that was also displayed visually; to convey patterns, or auditory signatures, of particular algorithms; and to replace visual displays so that other interesting events could be visualized. He used first-order sound mappings, primarily to pitch, and used different timbres for different aspects of a program.

Brown found sonification to be very useful. Listening to sorting algorithms revealed that particular algorithms produce distinctive visual and auditory signatures. Also, relationships in the data that are not visible can be heard. By using a multivariate mapping, he found that listening to one aspect of the data while looking at another was more useful than examining each aspect in turn [Brown, 1992].

4.2.5. Blattner, Greenberg, and Kamegai: Listening to Turbulence

In 1992, Blattner et al. used sound to represent aspects of fluid flow. The display uses both steady sounds and messages (earcons) to communicate different aspects of the data. For instance, laminar and injection flow are steady sounds, reflecting their continuous nature. Register represents viscosity, number of frequencies present represents density, timbre represents temperature, tempo represents speed, stereo balance represents direction and change of pitch represents vorticity. Changes of state or other important events are indicated by event earcons, the sonic equivalent of icons, that communicate a particular message. Since fluid flow is difficult to display visually, sonification reduces the possibility that some aspects of the data will be overlooked [Blattner et al., 1992] [Minghim and Forrest, 1995].

4.2.6. Jameson: Debugging With Sound

In 1994, David H. Jameson of the IBM T.J. Watson Research Center presented Sonnet, a system to aid in program debugging. A common problem in debugging is the inability to see the forest for the trees. Jameson felt that sonification would be useful in several ways, including solving the difficult problem of finding the part of a program that contains the error and detecting unexpected patterns in program execution.

Jameson’s audio debugger, Sonnet, uses easy-to-recognize sound patterns to follow the progress of a running program. Rather than use intuitive mappings to sonify program execution, Sonnet uses sound to notify the programmer of interesting events. A note is sounded by a function, and that note is modulated by subsequent function calls. In following loop iterations, a nonterminating note might indicate something wrong with the loop. One of the goals of Sonnet was to make it easy for the user to predict what should be heard, just as a mechanic can predict what a well-tuned engine should sound like. The unexpected sounds are the ones that communicate the existence of problems.

In one example, Sonnet was following the execution of a particular loop. When the loop was active, a single note was heard. Calls to one function would create changes in volume, and calls to another function would create changes in timbre. At one point, the volume changes stopped occurring. This revealed the existence of an uninitialized variable.

In addition to following the trace of a program’s execution, Sonnet can also follow changes in the data, including values of variables, read and write accesses to variables, and data structures [Jameson, 1994].

4.2.7. Minghim and Forrest: Sonifying Surface Data

In 1995, Rosane Minghim and A.R. Forrest of the University of East Anglia created the sonification tool SSound for displaying attributes of surfaces. Ssound is used in conjunction with a visualization tool based on NCSA Image. Surface visualization is often employed for rendering isosurfaces in volumetric data, for CAD applications, and for other multivariate data displays.

SSound uses multiple sound streams, which the user perceives as a burst of sound, a sequence of sounds, or a continuous presentation of varying sounds. Changes in sound represent a change in the data, and the type of change in sound represents the type of change in the data. The sound mappings implemented were based on both musical and everyday listening.

SSound offers a number of ways of sonifying data. In grid sonification, a grid is projected around an isosurface. The user moves the mouse around the grid, triggering sounds from each voxel. The user can hear any values that ‘stand out’ and can detect their position in the voxel from the stereo balance. The user can also define a subset of values to sonify. Values are mapped to pitch, with higher values represented by higher pitch. A volume scan process allows the user to define a volume and explore it with a probe. Tones are emitted that communicate information such as how much of the volume is occupied, how much of the total surface the volume contains, and the number of surface polygons in the volume. In analyzing the contents of a volume, high densities are represented by low frequencies and low densities are represented by high frequencies, exploiting the intuitive perception of fullness as heavy and emptiness as light. In coordinate mapping, coordinates are mapped to frequency. Sound streams represent the x, y, and z coordinates. Variations in any direction cause a change in the corresponding sound stream. Different streams are represented by different timbres, which are selected to be easily distinguished from each other. Volume, timbre, and tempo reflect properties of the surface. Rough areas generate slow and heavy timbres, while smooth areas sound ‘faster’. Geometric properties of the surfaces (normals, gradient sign, and curvatures) were mapped to sound in order to aid in identifying shapes and investigating the surface. This technique allows the user to identify unseen features.

The sounds used in the displays were carefully chosen following a metaphorical paradigm. High frequencies represent high absolute values, low densities, ‘big’ things, and ‘empty’ things. Low frequencies represent low absolute values, high densities, ‘small’ things, and ‘full’ things. Stereo balance gives direction information. Changes in rhythm indicate degrees of change in gradients. Changes in speed indicate curvature values. Timbres reflect qualitative aspects of the data, with ‘thick’ timbres representing ‘full’ or ‘rich,’ and ‘thin’ timbres representing ‘little,’ or ‘weak’. In order to enhance the user’s memory of a surface shape, a sound signature, or earcon, can be created.

Ssound was implemented on a Macintosh Quadra 950. The sound is produced by a Korg Wavestation SR MIDI synthesizer. Control of the MIDI device is supported by the MIDI library provided by Apple.

Minghim and Forrest anticipate that sound will become an integral part of most visualization systems. They found that in their displays the meaning of most sound mappings was easily understood, although training was sometimes necessary. Most of their sonifications help the user to identify aspects of surfaces that are difficult or impossible to detect visually. The more the users worked with the system, the more their understanding of sonification techniques improved and the more information they were able to obtain about the data [Minghim and Forrest, 1995].

4.3. General Sonification Systems

Four sonification systems stand out as milestones in the development of a truly general system that can display any kind of data, either alone or in conjunction with visualization.

4.3.1. Smith, Bergeron, and Grinstein: EXVIS

In 1990, Stuart Smith and Georges G. Grinstein of the University of Lowell and R. Daniel Bergeron of the University of New Hampshire added sonification to the EXVIS (Exploratory Visualization) system developed at the University of Lowell. EXVIS produces an iconographic display. Each data sample is represented as an icon whose attributes are determined by various aspects of the data. EXVIS produces a two-dimensional graphical display of these icons.

In order to display very high dimensional data, sound was used to augment the visual display. The auditory display is produced by using the mouse to probe the visual display of icons. Each icon emits a sound that is determined by aspects of the data. The sonification can be redundant, sonifying aspects of the data that are also represented by features of the icons, or the sonification can display independent aspects of the data that are not visually represented.

The auditory display uses stereophonic sound to provide a left-to-right spatial dimension and to provide distance cues. A MIDI device is used to associate an instrument voice, or timbre, with each icon of the visual display.

Just as the display of icons produces a visual texture, the sound produced by probing multiple icons produces a sonic texture. While some portions of the visual display may have similar visual textures, their auditory textures may be very different.

The EXVIS project was the first system to allow interactive manipulation of sound. It was also the first integrated visualization system, using both graphics and sound for data exploration [Grinstein and Pickett, 1989] [Smith and Williams, 1989].

EXVIS is a general system in the sense that it is not restricted in the kinds of data it can handle. It is limited, however, by being restricted to a two-dimensional iconographic display. The auditory display relies on this iconographic display and can only create sonifications in relation to it. Portability was not considered in the design, nor was adaptability or extensibility of the system by the user.

4.3.2. Scaletti: Developing Prototype Sonification Tools Using Kyma

In 1991, Carla Scaletti of the University of Illinois and Symbolic Sound Corporation, working with the CERL/NCSA Data Sonification Project, developed a sonification system that used digital signal processors to implement software sound synthesis. The goal of the project was to develop a set of prototype sonification tools that could be applied to time-dependent data streams.

The project was implemeted on the Kyma system, developed by the Symbolic Sound Corporation. Running on a Macintosh or 486 PC, Kyma, the software component of the system, is written in Smalltalk and allows the user to manipulate the sonification tools visually in the form of icons in order to create a sonification. The sound hardware consists of the Capybara, a multiprocessor containing nine digital signal processors operating in parallel. This hardware allows software sound synthesis to be done in real time.

The sonification tools include Shifter, which shifts signals from the sub or ultra sonic range into the human auditory range and produces the DataStream; Mappers, which allow the DataStream to control various sound parameters; Analyzers, which extract information from signals and control the parameters of sounds that are heard; Combiners, which produce the Sum, Difference, or Product of two data streams; and various high-level tools such as Comparators, Markers, and Histograms.

Scaletti produced a number of interesting sonifications involving the motion of pendulums, the forest of Yellowstone Park, smog in Los Angeles, and blood circulation. In the sonification of forest data, a visualization showed the age of the forest in different shades of green and forest fires in red. The data was animated for the time period from 1690 to 1990. The sonification used a Histogram in which the forest age was mapped to pitch. Greater age was mapped to lower frequencies, as this mapping was more intuitively understood. Forest fires were mapped to noise with the size of the area on fire at any particular time controlling the amplitude of the noise. The resulting bursts of noise directed the eyes to the red flashes that were easy to miss using visualization alone.

Scaletti’s system is a general, intuitive system with a good user interface and is capable of producing very sophisticated sonifications. Since the system was designed to display time-varying data, it follows a dataflow model. This design may restrict the kinds of data that can be displayed. It is unknown, for instance, if this system would support the ability to probe data, rather than to sonify a data stream.

The main difficulty with the system is that the hardware is somewhat exotic. A significant investment of time and money and some specialized knowledge is required to put together a similar system. This kind of investment is usually enough to deter someone who only wants to discover if sound might be useful [Scaletti and Craig, 1991] [Scaletti, 1993] [Scaletti, 1994].

4.3.3. Astheimer: The apE Visualization System

In 1992, P. Astheimer of the Fraunhofer Institute for Computer Graphics in Darmstadt, Germany, integrated a sonification tool into apE, an existing visualization system. The apE system, created at Ohio State University, is a dataflow system similar to SGI Explorer that allows the user to build a visualization by selecting pre-programmed modules that manipulate the data in certain ways. By adding sonification capability, Astheimer intended to use sound both to reinforce the visual display and to provide additional information if the visualization was overloaded.

Astheimer envisioned a unified visualization/sonification system that would allow the user to manipulate the data mapping interactively. It would be modular, like its parent system, so that extensions could be easily integrated. The sonification package would have the advantage of being able to extend an existing system, so that a visualization program would not have to be recreated. A common user interface would handle both visualization and sonification. Finally, the system would run on available hardware and be adaptable to whatever other hardware platforms might be available.

Astheimer presents a very complete reference model in order to define a conceptual framework and describe properties of the system. He utilizes three main pipelines: the classical visualization pipeline, the mapping of data to audio samples, and the acoustical rendering, including environmental effects.

He also discusses the architecture of a dataflow system. The ideal system consists of a hardware layer, a system layer that provides access to the hardware, a library layer for providing modular functionality, a module layer, a configuration layer to provide the means to configure the modules, and an application layer.

The integrated system that Astheimer produced met many of his requirements for an ideal system. The apE system is portable to a number of platforms. It is modular, as is the sonification package. The audio mapping capability utilizes frequency, duration, volume, echo, and some aspects of the sound envelope.

Astheimer applied his system to both atmospheric data and fluid dynamics data. For the atmospheric data, ozone concentration is mapped to pitch (the frequency of a sine wave). For the fluid dynamics data, which describes fluid flows in an estuary, distance to the viewer is mapped to volume and velocity is mapped to frequency.

A difficulty with Astheimer’s approach is that data sets require some preparation before they can be utilized by a dataflow system like apE. Astheimer himself admits that his data preparation tools are insufficient. Also, there is often a steep learning curve associated with using such a system because of both data formatting requirements and the necessity of learning the capabilities of the modules and how they interact. Some scientists resist learning a system like apE unless they are convinced that it will be useful enough to repay the initial investment of time and effort. Finally, a pre-programmed environment like apE may not be suitable to displaying some types of data and may not provide the kinds of displays that are needed.

Another difficulty recognized by Astheimer is that the lack of a sound library makes working with the system difficult [Astheimer, 1993].

4.3.4. Madhyastha and Reed: Porsonify and Pablo

In 1992, Tara Madhyastha and Daniel Reed presented Porsonify, a portable sonification system that was eventually incorporated into the Pablo project, a visualization system for exploring parallel processing. Porsonify was the first and only system other than Listen designed to be integrated into any existing visualization system. Because it is the most similar of all the systems to Listen in its goals and its design, Porsonify is discussed here in some detail.

Porsonify supports both the mapping of data to sound parameters such as pitch, volume, and duration, and the playback of prerecorded sample files. Sound sample files can be used to alert the user to error conditions or interesting events, or to provide a motif with specific meanings, like earcons [Blattner et al., 1989].

In order to experiment with multivariate data mappings, Madhyastha and Reed sonified twelve parameters that represented attributes of cities in the United States, such as climate, recreation, housing, health care, and others. Population was mapped to duration, climate was mapped to timbre with unpleasant timbres representing bad climates, longitude was mapped to stereo balance, volume represented housing costs, etc. The result was that as each city was played, a unique sound was created. At first hearing, it was difficult to remember all of the mappings, but the sound of each city had its own unique character.

Porsonify has produced excellent results in working with real data. Integrated into the Pablo environment, Porsonify has been used to sonify the time-varying instruction mix of two processing benchmarks. Machine instructions were grouped into six categories. Each sample was represented by a note with six characteristics: sustain, balance, timbre, pitch, duration, and volume. The characteristics were determined by the percentage of instructions in each category. Subjects were able to detect differences in instruction mix over time quite easily. Pitch and balance variations were also easily grasped, but variations in duration and sustain proved more difficult.

Another sonification displayed a message-based parallel processing system. To analyze communication patterns, send and receive messages were sonified. The pitch of a note identified the processor and the location indicated whether the message was a send or receive. This sonification showed that no cluster of processors was responsible for a large number of messages. The sonification also revealed an error that had gone undetected by visualization: a processor had sent a message that no other processor had received. The result was a note that never terminated. Furthermore, the processor at fault could be identified by the timbre of the note [Madhyastha and Reed, 1995] [Madhyastha and Reed, 1994] [Madhyastha, 1992].

Porsonify was implemented on the Sun SparcStation with no sound library support. Consequently, network and sound daemons and device drivers had to be written to handle communication with sound devices, which included the Sparc audio device and two MIDI synthesizers. Although care was taken to abstract the functionality of Porsonify from device-dependent code, the user must launch the necessary daemons and take into account the capabilities of the sound device that is in use. Porting the system to platforms without sound library support requires that new daemons and drivers be written -- a daunting task.

Possibly because of the constraints of the platform, interaction with Porsonify is complex. The user must work with multiple files that define sound mappings and hardware configurations, and that implement the mapping functions. In addition, the user must provide transformation functions that define Boolean tests and that scale data into appropriate values for sonification. These tasks must be done before a sonification can be heard and involve either editing files or interacting with multiple interface windows, each of which allows the user to configure some aspect of the sonification. Consequently, Porsonify has a steep learning curve.

Since setting up a sonification involves a complex sequence of steps, interaction with Porsonify is awkward. It is difficult, for instance, to compare two sonifications, because by the time the second one has been set up, the first has been forgotten. The complex interaction also discourages experimentation; too much work is required to produce each sonification. Because of the use of a number of windows to configure different aspects of a sonification, all of the user’s options are not visible simultaneously in the interface. This aspect of the design does not promote intuitive interaction.

5. Listen

The best way of proving the utility of sound is by using it.

Rosane Minghim, 1995

5.1. The Objectives

A recurring theme among sonification researchers is that much more experience with the sonification of actual data is needed before we will be able to determine how sound can best be used in the research environment. Sonification has certainly been useful in the areas where it has been tried. In order to encourage the adoption of sonification as a legitimate technique for data analysis, the Listen toolkit was created.

For a variety of reasons, few of the existing sonification systems have been used by researchers other than their creators. Some of them were designed with a particular application in mind and did not lend themselves to general use. Some were created to study sonification itself, rather than to implement it. Others proved inflexible or required specialized equipment or were difficult to use.

The primary objective in the creation of Listen was to provide sonification tools that might actually be useful to researchers. Such a toolkit would run on a platform already used extensively in scientific visualization and be portable to other platforms. It would be general and flexible enough to work with many types of data. It would be modifiable by its users, so that its functionality could be tailored to a particular environment. It would be extensible by its users, so that as feedback indicated what kinds of sonifications are useful in that environment they could be added. In order to encourage experimentation, it would be highly interactive, so that mappings could be easily set up and tested and even changed as the sonification was playing. It would perform essential routine tasks automatically. It would be easy to install and intuitive to use. In order to determine whether sonification is useful in a particular research environment, a stand-alone sonification system that uses a minimum of hardware would be available for initial experimentation. If sonification looks promising, incremental functionality would allow users to add new devices and experiment with more complex sonifications. Finally, the ability to integrate sonification into an existing visualization system is essential.

Listen has achieved all of these objectives.

5.2. The Platform

Listen was implemented on the SGI platform and uses the SGI internal audio chip, an external MIDI device, or both. SGI machines are used extensively in scientific visualization and are therefore available to many people interested in sonification. The SGI Irix operating system offers both an audio library for controlling the internal audio device and a MIDI library for controlling a MIDI device. These sound libraries greatly facilitate communication with the sound hardware.

The MIDI device used in development was the Yamaha PSR-320, an inexpensive synthesizer that supports General MIDI. It was connected to the computer by an Opcode MIDI translator.

5.3. The Design

To achieve the functionality required, it was clear that Listen should be highly modular. Since the user is encouraged to modify and extend the Listen toolkit, its structure has to be easily understandable and the operations of the modules have to be as independent of each other as possible so that unforeseen interactions cannot take place.

To provide incremental functionality, there are four basic programs that comprise the toolkit. Listen 1 accepts command-line arguments and uses the internal audio chip. Listen 2 uses the internal audio chip and has a graphical user interface that permits more complex mappings than Listen 1. Listen 3 uses a MIDI device and has a graphical user interface. Listen 4 is a module version of Listen 3 and is designed to be easily incorporated into an existing visualization program.

Listen 1 and Listen 2 allow the user to get started using sonification with a minimum of difficulty. No additional hardware is required, since both use the internal audio chip. Listen 2 uses a graphical interface provided by XForms [Zhao and Overmars, 1996]. If XForms is not installed on the system, the command-line program can be used. These basic programs allow a potential user to get up and running quickly. If sonification is not found to be useful, the investment of time and resources has been minimal.

If sonification produces good results, the addition of a MIDI device can be justified. Listen 3 implements a MIDI device, which provides more complex mapping possibilities. Once sonification has proven its value and users have gained experience with it, the addition of the module, Listen 4, to existing visualization programs can be done with the assurance that the investment of time will be rewarded.

As a unit, these four programs provide a structured starting point for experimenting with sonification. The expectation is that, using the basic ideas already implemented and with the experience already gained, the user will create more complex, more interesting, and more useful sonification tools as more is learned about sonification in a particular environment.

5.4. The Modules

The modules abstract the essential functions of sonification. Three key tasks were identified: handling the data itself, mapping the data to the sound parameters, and generating the sound. Each of these tasks defines a basic module. Since any of the three basic modules could be implemented in a variety of ways, it is necessary to limit the interaction between them. The fewer points of contact, the fewer the opportunities for changes in one module to interfere with the operation of another.

Figure 5‑1[image: image2.png] The Listen Modules
In fact, the three basic modules do not interact with each other at all. All of their operations are managed by a control module. The three basic modules interact only with the control module. Consequently, any of them can be changed, replaced, or even deleted, and only the points of contact with the control module will be affected.

The interface was also implemented as a separate module. It could have been integrated into the control module, but since the user may wish to change or replace the interface, it was implemented as a separate module in order to simplify that task. The interface module communicates with the three basic modules through the control module.

The modularity of the design is the single most important feature in achieving the project objectives. Flexibility, adaptability, and extensibility would be impossible to achieve without this modular, object-oriented design.

5.4.1. The Interface Module

The function of the interface module is to handle user input and to provide feedback to the user about the state of the program. The interface module of Listen 1, the command-line version, simply parses the command-line arguments. Listen 2, Listen 3, and Listen 4 all use XForms to create a graphical user interface. Like Motif, XForms runs in the XWindows environment. If a user wishes to use another interface, such as Motif or Windows, only the interface module would have to be modified in order to adapt the program to the new interface.

The code for a graphical user interface can be quite large. Each button, slider, and input object must be defined. Sliders and counters must be given bounds values and default values. Callback functions must be provided to handle user interaction. When changes occur in the program, they must be reflected by the interface. Because of the potential size of the interface code, the decision was made to separate the interface module from the control module. This separation adds a layer of function calls as the control module relays messages between the user and the basic modules, but this added complexity has not exacted a significant performance penalty in practice, and the understandability of the program is greatly increased by it.

5.4.2. The Control Module

The control module is the intermediary between the interface and the three basic modules. It creates a clear separation between the basic modules and the interface. It controls all of the interaction between the three basic modules. All of the basic functionality of the program can be discovered by understanding the control module.

5.4.3. The Data Manager Module

In order to create a sonification, a great deal must be known about the data. If a particular data stream is to be sonified, the minimum and maximum values must be known in order to scale the data into an appropriate range for mapping to a sound parameter.

Usually, but not always, data is read from a file. In these cases, the data manager gets the name of the data file from the control module, reads the file in order to learn essential information about it, and remembers that information. The data manager knows how many data values are in the file. If the file contains vector-valued data, the data manager knows how many fields there are per data value. The data manager finds and remembers the minimum and maximum data values in each data field. When the sonification is to be played, the data manager feeds the data, line by line, to the control module, which passes it to the sound mapping module. When the sound mapping module needs the minimum and maximum values of a data stream, the data manager supplies them. The data manager handles everything that has to do with the raw data, including error checking to ensure that the data is in the proper format.

Because the data manager takes care of learning the characteristics of the data, scaling the data into appropriate values for the sound parameters can be done automatically, so the user doesn’t have to provide transformation functions. In the module version of Listen, the parent program must provide the minimum and maximum values of a data stream, but the scaling of the data is still automatic.

The implementation of the data manager that is provided with the Listen toolkit reads data files of a basic format that simply consists of lines of data values. Each line of the file is interpreted to be one data value, which can be either scalar or vector-valued. Vector-valued data values can have up to ten fields, where a field is one element of the vector. A data stream consists of all the values of one particular field. Therefore, the user can specify, for instance, that field 3 be mapped to pitch. All the other fields will be ignored, and the sonification will be produced by field 3.

When the module, Listen 4, is integrated into a visualization program, it is usually the case that the parent program manages the data. The data manager can then be relieved of the responsibility for reading data files, but must still keep track of the minimum and maximum values of each data stream that is to be sonified.

5.4.4. The Sound Mapping Module

The sound mapping module keeps track of how the data is to be mapped to the sound parameters. It also keeps track of information about the sound parameters themselves, including their maximum, minimum, and default values. The sound parameters implemented are: pitch, duration, volume, and location. In the MIDI implementation, a timbre can be assigned to each data stream.

Since the types of mappings that can be implemented depend on the capabilities of the sound hardware, the features of the sound mapping module will depend to some extent on the sound device module.

Once the user has defined a mapping, the control module gives the sound mapping module a scalar or vector-valued data value. The value or values that are to be sonified are scaled into an appropriate range and mapped to an appropriate parameter value for the sound parameter or parameters to which they are to be mapped. If a sound parameter is not determined by a data value, it takes on a default value, which the user also controls. The sound mapping module prepares an array of values that define the properties of one sound.

5.4.5. The Sound Device Module

The sound device module is responsible for initializing the sound equipment and causing it to create a particular sound. The control module gives the sound device module the array that was created by the sound mapping module. That array defines the value of each parameter of a sound. The pitch of each note to be played, the timbre to be used for each note, the volume and stereo location of each note, are all defined, as well as the length of time to play that particular sound.

In order to port Listen to another platform, only the sound device module must be rewritten. If the new platform has sound library support, porting the program should involve simply substituting one set of library calls for another. The sound device module consists of very few functions. It is in fact the smallest of all the modules, because the sound libraries do almost all of the work.

5.5. The Listen Toolkit

5.5.1. Listen 1

Listen 1 takes command-line arguments that allow the user to define a sonification. The command-line arguments specify a data file and a mapping. The user can map any data field of the file to any of the sound parameters: pitch, duration, volume, or location.

Here is a sample command line:

listen datafile -P 3

The resulting sonification will map the third field of each data value to pitch.

The line:

listen datafile -P 3 -L 3

maps the third field of each data value to both pitch and location.

The line:

listen datafile -D 2 -V 1

maps the second field of each data value to duration and the first field to volume.

Sound parameters that are not explicitly mapped to a data field take on a default value.

5.5.2. Listen 2

The addition of a graphical interface permits more complex mappings to be specified and allows the user to control the range and default values of the sound parameters.

The user selects a data file from a browser. Information about the file appears in the interface, including the name of the data file, the number of data values in the file, and the number of fields per data value.

Counters allow the user to select which field to map to which parameter. It is possible to control all four parameters (pitch, duration, volume, and location) with the same field. Alternatively, each parameter could be controlled by different fields.

When a field is selected to be mapped to a parameter, the minimum and maximum values of that data field are displayed on the MIN and MAX sliders corresponding to that parameter. These sliders allow the user to select a subrange of the data for sonification. Only data values that fall between the user-defined low and high cutoff values will be sonified.

If more than one parameter is controlled by the same data field, any subrange of data set for one parameter must also be the subrange used for mapping that field to any other parameter. The interface will not allow the user to select different subranges for different parameters that are controlled by the same data field.

The range values of pitch, duration, and volume are controlled by the user. This feature allows the user to narrow the range of pitches used, which may make the sonification more listenable since very low and very high pitches are difficult to hear accurately. The duration of a note can last from a tenth of a second to three seconds. This range can also be decreased to keep the sonification from becoming tedious. Volume ranges can also be set to make the data more listenable. When parameter ranges are narrowed, it must be kept in mind that the number of values available to which to map data has decreased, and the effect on the sonification should not be ignored. In many cases, however, using the full range of possible values is unnecessary. The user cannot change the range value of location. Location values always range from full left to full right.

Figure 5‑[image: image3.png]2 User Interface of Listen 2

If any parameter is not controlled by the data, it takes on a default value. These defaults can be set by the user to make a sonification more listenable. For instance, the volume can be adjusted by changing the default volume value. The default value of the location parameter is always centered.

The pitches used are the semitone scale. All twelve notes of each octave are used. Each succeeding pitch is one half-step from the previous one.

Once a data file has been opened and a mapping defined, the Play button starts the sonification. The sonification can be paused at any time using the Pause button. When the sonification is paused, pushing either the Pause or Play button causes it to resume from where it left off. The Stop button aborts a sonification.

So that interesting sonifications can be restored, a Save function is provided that saves all of the information about a sonification to a file. The sonification can be restored simply by loading its file.

5.5.3. Listen 3

As in Listen 2, the user selects a data file from a browser and information about the file appears in the interface. The number of fields per data value is indicated by the appearance of information about each valid field in the fields section of the interface. Each field is numbered and its minimum and maximum value are displayed as the bounds of corresponding sliders. These sliders allow the user to select a subrange of the data for sonification. Only data values that fall between the user-defined low and high cutoff values will be sonified.

Next to each field number are menus allowing the user to select a timbre and a sound parameter to be used in mapping that field. If a field is not to be sonified, its timbre should be set to ``NONE.’’

Since Listen 3 is implemented by a MIDI device, more than one field can be mapped to any sound parameter except duration. Only one value can control duration, because any single sound produced can have only one duration. In Listen 2, only one note could be played at a time. Using MIDI, Listen 3 can play many notes at once, which allows each field to produce a sound. It is not possible, [image: image4.jpg]however, to map a field to more than one parameter, as it was in Listen 2. If a field is mapped to pitch, it cannot also control the duration of the sound. This feature could be implemented if needed.
Figure 5‑3 User Interface of Listen 3
As in Listen 2, the user can select range and default values for the sound parameters.

In addition to the semitone scale implemented in Listen 2, Listen 3 also implements a whole-note scale, and a seven-tone scale, which is perceived as a major scale. Some people may find other scales to be more familiar, more musical, or more pleasant to listen to. While the semitone scale uses 60 values, the wholenote scale uses 30 and the seven-tone scale uses 35. This restriction on the number of notes available to represent data values must be kept in mind.

As in Listen 2, Pause and Stop functions are implemented, as is the Save function.

In Listen 1 and Listen 2, all mappings are linear. That is, the minimum data value is mapped to the minimum parameter value, the maximum data value is mapped to the maximum parameter value, and all data values in between are mapped linearly to parameter values. In Listen 3 a linear mapping is the default, but it is possible to select a transfer function that is non-linear. This feature allows the user to implement high-pass, low-pass or boolean filters. Using a utility package, the user can interactively define customized non-linear transfer functions. These can then be loaded into the Listen program. It is also possible to define a transfer function in which each parameter has its own unique function.

In order to provide the user with the greatest amount of flexibility and interactivity, the range sliders that define the range of the data to be sonified can be used as high-pass, low-pass, band-pass, or boolean filters. The transfer functions add to this ability by allowing the user to define a non-linear mapping of the sonified data values.

5.5.4. Listen 4

Listen 4 is a module that is designed to be incorporated into an existing visualization system. It is essentially the same as Listen 3, except that the interface module has no main() function. Instead, it contains functions that define the interactions between the parent program and Listen.

Figure 5‑[image: image5.jpg]4 User Interface of Listen 4

The parent program must do essentially two things: supply minimum and maximum values for each data stream to be sonified and issue a command to play a data value. When Listen 4 is incorporated into a visualization program, the data manager module must contain variables to hold the minimum and maximum values of each data stream to be sonified. If not all data streams are known, temp values can be used. It is cleaner, however, to allow the data manager to keep track of any data stream that may be sonified. The minimum and maximum values can be found when the data is first processed and sent to the data manager. This method is easier than reprocessing the data every time a sonification is to be played.

The command to play a data value must specify which data stream the value belongs to so that Listen will be able to scale it properly. The command from the parent program essentially replaces the Play button pushed by the user, since Listen is now under the control of the visualization program. If the visualization program includes animation functions, they can be easily sonified by issuing a command to Listen on every redraw. If a static visual display is to be sonified, the mouse can be used to select values to be sonified, or the values can be sonified in some order, with the display highlighting which value is being sonified. This capability to either sonify an animation or probe the data gives the user a great deal of flexibility in creating a sonification/

Integrating the module into an existing program is quite simple and straightforward. The following are the essential steps required.

· The parent program must initialize the Listen module.

· The parent program must cause the interface of the Listen module to be displayed. The Listen module interface can be displayed either when the parent program’s interface is displayed or it can be launched with a ``Sonify’’ button on the parent program’s interface when needed.

· Variables to hold the maximum and minimum values of each data stream must be added to the data manager module and the value of these variables must be set.

· The PlayDateValue() function must be called to play each sound of a sonification.

The Listen module implements Listen’s graphical user interface and handles all interactions with the user through that interface. Since the parent program is now managing the data, the function of the interface is restricted to allowing the user to define a sonification.

5.6. Attributes of Listen

· Listen is general. It allows the user to sonify any kind of data and supports both a dataflow model and a probe model.

· Listen is flexible. Any data stream can be mapped to any sound parameter using any timbre. Subsets of each data stream can be easily selected for sonification. Listen 3, with MIDI support, can sonify any reasonable number of data streams in any combination.

· Listen is intuitive. The graphical interface presents a display of all of Listen’s sonification capabilities simultaneously and is laid out in such a way that setting up a sonification is self-explanatory.

· Listen is interactive. Because all the mapping controls are always present on the graphical interface, setting up a sonification involves little more than selecting a few menu items and manipulating some sliders. Many aspects of the sonification, such as sound parameter ranges and defaults, can be changed even while a sonification is playing. If a sonification is uninteresting, it can be stopped at any time.

· Listen is adaptable. Because of the modular structure of the program, it is very understandable, which makes it easy to modify and difficult to break.

· Listen is extensible. New functionality can be added easily by extending Listen’s classes as needed.

· Listen is portable. Only the sound device module and possibly the user interface need to be changed in order to port Listen to another platform.

· Listen can be implemented on easily available and inexpensive hardware. MIDI devices are inexpensive and their use in multimedia ensures that many platforms will support them.

5.7. Programming Details of Listen

5.7.1. The Interface

Listen’s graphical user interface is implemented using XForms. XForms runs in the XWindows environment and was adapted from the Forms library that runs in SGI’s IrisGL environment.

XForms was written by T.C. Zhao and Mark Overmars, who own the copyright. Permission to use XForms for non-commercial and non-profit purposes is granted. Commercial program developers must license XForms.

XForms supports a large number of dials, sliders, buttons, counters, input and text objects, menus, and other useful objects. Rapid prototyping is made possible by the fdesign program, which allows the user to interactively design a graphical interface. This ability allows the user great flexibility in adding new functionality to Listen. A new button, dial, or slider can be added to the interface in minutes. The use of fdesign is in keeping with the design objective of making it easy for the user to modify and extend Listen.

XForms can be obtained from:

ftp://bloch.phys.uwm.edu/pub/xforms

or from the web site:

http://bragg.phys.uwm.edu/xforms

5.7.2. The Class Structure

Listen is written in C++. The encapsulation of the program modules into classes enforces the object-oriented design of the program and makes it more understandable. In order to extend the program, the programmer can use inheritance to create new subclasses. This technique has the advantage of not breaking the parts of the program that are already working. The use of C++ enforces design decisions that are essential to the usability and extensibility of the program. Even the best-designed program can become spaghetti code, given enough modification. The use of C++ will allow the program to be modified and extended in an orderly way.

The Control Class

The main() function of Listen and the Listen structure of Listen 4 contain an instance of the Control class, which implements the control module. The Control class contains one or more instances of the basic classes: the DataManager, the SoundMapping, and the SoundDevice.

The DataManager Class

The DataManager class is a base class that contains only variables to contain the minimum and maximum values of the data streams to be sonified. The variables that hold this information for a data file are instances of the ArrayOfFields class.

The FileDataManager class is a subclass of the DataManager class. It contains all of the functionality necessary to obtain data from files. It implements the functions of reading data files, obtaining the necessary information about them, and feeding the data values to the control module.

The ability to handle files in various formats can be implemented by creating subclasses of the FileDataManager class and overriding the parsing functions. The ability to add subclasses enables a program to handle multiple file formats by declaring an instance of each required subclass.

The SoundMapping Class

The SoundMapping class has two subclasses: the AudioSoundMapping class and the MIDISoundMapping class. The AudioSoundMapping class handles mappings that use the SGI internal audio device. The MIDISoundMapping class handles mappings that use a MIDI device. If both devices are used, an instance of both classes can be declared.

The SoundMapping class needs to know the maximum and minimum values of a data stream in order to properly scale the data to the sound parameter values. This information must be obtained from the DataManager. Through the use of a copy constructor, the SoundMapping class can obtain a copy of the DataManager that contains the required information. Since it is a copy, there is no danger that the Sound Mapping module can corrupt any of the data in the Data Manager module. The use of C++ thus ensures the integrity of the Data Manager module, which the use of C could not easily do.

The SoundDevice Class

The SoundDevice class has two subclasses: the AudioSoundDevice class and the MIDISoundDevice class. The AudioSoundDevice class handles communication with the SGI internal audio device. The MIDISoundDevice class handles communication with a MIDI device. If both devices are used, an instance of both classes can be declared.

The Listen Module

In Listen 4, the module version of Listen, the files that contain main() and the implementation of the interface, listen.h and listen.cc, become the interface to the module. The main() function is eliminated. The program into which Listen is to be incorporated declares a variable of type Listen, a pointer to a struct. The Listen struct contains an instance of the Control module. The functions used by the parent program to communicate with the Listen module are defined in listen.h.

The Array Classes

The are two basic array types used in Listen: an array to contain information about the fields of a data value and an array to contain information about the sound parameters. Listen uses an array class that has two subclasses: ArrayOfFields and ArrayOfParameters. Since fields are numbered from 1 to 10, it is useful to be able to think of field 1, field 2, etc. without having to worry about how the arrays are indexed. An ArrayOfFields variable allows the programmer to index the array with the actual field number without having to worry about bounds errors. An ArrayOfParameters is indexed using one of the constants: PITCH, DURATION, VOLUME, or LOCATION. Again, the programmer need not be concerned about bounds errors.

The use of these array classes makes the program more robust and spares the programmer from errors caused by declaring an array of the wrong size, indexing an array improperly, or by overrunning the array bounds, as these errors will be caught at compile time. A half-day bug encountered during program development was caused by declaring an array of the wrong size. That experience inspired the use of these array classes.

6. Applying Listen to Uncertainty Visualization

In order to test the value of Listen on real data, Listen 4 was incorporated into two uncertainty visualization programs with interesting results. In both cases, adding Listen was accomplished quite easily. In both cases, the addition of sonification revealed information about the data that had not been discovered through the use of visualization alone.

6.1. Surf: A Surface Comparator

Surf displays the geometric uncertainty of surface interpolants. The system computes interpolants such as multiquadric, inverse multiquadric, thin plate spline, linear, bilinear, and bicubic. The system also computes geometric properties of these interpolants, including position, normals, isophotes, and curvatures. The geometric uncertainty at any point is the difference between the geometric quantities of two interpolants [Lodha et al., 1996b].

The geometric uncertainty is displayed using many visualization techniques including pseudo-coloring, differencing, animation, and glyphs. The uncertainty values are mapped to visual parameters such as size, shape, color or transparency.

Listen provides the ability to map uncertainty values to pitch, duration, volume, or location. A number of data streams were defined, including the value of interpolant 1, the value of interpolant 2, the difference between the interpolants, and the positive and negative difference values of one interpolant as compared with the other. Each of these data streams could be sounded independently, or two streams could be sounded together.

Figure 6‑1[image: image6.jpg] User Interface of the Listen Module in Surf

The visualization program includes an animation in which a glyph, or probe, travels over a surface representing one of the interpolated values. The size of the glyph is proportional to the size of the difference between the two interpolants. When the entire surface is viewed, the probe is too small for its change in size to be clearly seen. Sonifying the difference values allow the user to perceive much more clearly the magnitude of the difference values while still being able to view the entire surface.

[image: image7.jpg]
Figure 6‑2 Grid of glyphs in Surf

The surface over which the probe travels is pseudo-colored, with black representing the area of least difference and white representing the area of greatest difference. One area appeared to be solid black, indicating that the difference value was minimal. It also contained no gradations of color, giving the impression that the difference values were very close to one another. Sonifying those values, however, revealed that there were much greater differences than the visualization indicated.

Using the different data streams that had been defined, it was possible to sonify these difference values in a number of ways. Each interpolant value could be mapped to pitch using a unique timbre. Dissonance in the sound revealed areas of greater difference. The difference value alone could be mapped to pitch, duration, or volume, so that increases in the pitch, duration, or volume indicated areas of greater difference. Another data stream used one of the interpolants as a reference value and played it as a constant note, while the positive or negative difference value between the two interpolants was mapped to pitch, so that positive differences caused a note higher than the reference value to be played, and negative differences caused a note lower than the reference value to be played. The difference value could be easily followed as it moved above, then below, the reference value, displaying both the sign and the magnitude of the difference between two interpolants.

An interesting mapping was the mapping of duration to the difference value using a drum timbre. As the probe moved over the surface, areas of greater difference produced a longer note duration, with the result that in areas of greater difference, which were the areas of greatest interest, the probe slowed down. This result allowed more time to view important areas. The use of a drum timbre brought out rhythmic patterns in the data. In some areas, the difference values increased and decreased at a constant rate, while in other areas, the rate of increase and decrease was quite irregular.

The visualization program also provides a static display that uses a grid of glyphs to convey information about the interpolants at the points on the grid. One glyph shows the difference value between the two interpolants. Others display the difference values between the mean and Gaussian curvatures of the surface. In order to sonify the static display, the glyphs were first sorted in order of the difference value of the interpolants. They were then displayed in that order. As each glyph was displayed, a sound was generated that corresponded to some aspect of the data. In one case, the difference value between the interpolants was sonified. In another case, the mean curvature difference was played using one timbre, while the Gaussian curvature difference was played using a contrasting timbre. While following the progression of the difference values, it was easy to perceive ``spikes’’ in the curvature differences. Using this technique, it was possible to correlate the areas of maximum difference in the two curvatures, and to correlate the curvature information with the difference information. This multivariate mapping would have been very difficult to represent visually.

As expected, experimenting with different mappings added to the user’s understanding of the data and suggested new ways of creating meaningful sonifications.

6.2. UFLOW: A Flow Visualizer

Listen was also incorporated into UFLOW, a system for visualizing fluid flow uncertainty. The integration was done by the UFLOW programmer and took about half a day [Lodha et al., 1996a].

UFLOW computes several different particle traces using different numerical integration algorithms, including the Euler and 4th order Runge-Kutta methods. The system also computes flow properties of these particle traces, including position, speed, velocity, and x, y, and z components of position and velocity. The fluid flow uncertainty at any point is computed as the difference between the flow attributes at the corresponding points of two particle traces.

Figure 6‑[image: image8.jpg]3 User Interface of UFLOW

The fluid flow uncertainty is displayed using visualization techniques that include glyphs, envelopes, and animations. Listen provided the ability to map one or more fluid flow uncertainty parameters to sound parameters.

Listen was used to sonify the animations to provide redundant information about the data. Streamlines and glyphs like balls and barbells are used by the visualization to indicate the magnitude of the difference between particle traces. By mapping the same information to pitch, the sonification reinforced the information gained from the visualization. UFLOW’s designer remarked that he was more confident that his perception of the visualization was correct when the information was also presented in sound.

In one case, the visualizations of a stretch-twist-flow particle trace seemed to indicate that difference values in a particular area were monotonically increasing. The sonification clearly showed an increase-decrease-increase pattern in that area. Until sonification had been applied, the existence of this pattern had been [image: image9.jpg]undiscovered.

Figure 6‑4 User Interface of the Listen Module in UFLOW
Listen was also used to implement multivariate mappings. In one case, the distance uncertainty and the uncertainty in the z component were mapped to pitch, using contrasting timbres to distinguish between them. It is not possible to display both uncertainty measures visually, but they could be sounded simultaneously.

The developer of the UFLOW program continues to use Listen and continues to modify and extend it to meet newly-discovered needs.

7. Conclusions

Experience with Listen indicates that, as expected, sonification is a valuable technique for exploring data. Redundant visual and auditory display increases the confidence of the user that characteristics of the data are being accurately perceived. Multivariate displays allow the user to display characteristics of the data concurrently that would be difficult to accomplish in a visual display alone. The optimal scientific visualization system should certainly provide sonification capability.

As sound is more widely incorporated into computing systems, the feasibility of implementing sonification increases. The use of internal sound devices and external MIDI devices provides a great deal of the functionality necessary to create meaningful and interesting sonifications. Sonification toolkits like Listen should make the introduction of sonification into research environments relatively painless.

An essential feature of such toolkits must be the ability to incorporate sonification tools into existing visualization systems. Although there are a number of general systems available, such as IBM Explorer and SGI Explorer, many scientists find them difficult to use and not adaptable enough to their needs. Consequently, they prefer to create their own systems tailored to the data they need to display. A sonification toolkit that can be easily adapted to each specialized visualization system can provide the ease of use and flexibility needed for sonification to be accepted and used.

The best way to determine how to create meaningful sonifications is to experiment with creating them using real data. It is becoming clear that effective sonifications are data driven, with the nature of the data itself suggesting new and more effective ways of using different sound parameters and different ways of mapping the data to them. It is hoped that Listen will encourage this essential experimentation.

A. User’s Guide

A.1 Installation

The Listen directory contains six subdirectories:

Listen_1, Listen_2, Listen_3, Listen_4, Data & TF.
The Listen subdirectories contain the four versions of the Listen program. Each Listen subdirectory contains all the files for that version of the program, including a Makefile. It is necessary to tailor the Makefile to your own system. You must change the pathname for the XForms library for the programs that use XForms (all but Listen 1) to the correct XForms pathname for your system. XForms can be obtained from:

ftp://bloch.phys.uwm.edu/pub/xforms

or from the web site:

http://bragg.phys.uwm.edu/xforms

It may also be necessary to provide pathnames for the SGI audio and MIDI libraries, depending on your system. Make sure that the appropriate libraries are installed on your system. Listen 1 and Listen 2 use SGI's audio library and Listen 3 and Listen 4 use SGI's MIDI library. See Sections A.2 through A.5 for information about each program. When the correct pathnames have been provided in the Makefile, type 'make' to compile the program in that directory.

The Data directory contains some sample data files. By default, Listen 2 and Listen 3, which read the data from files and use a file browser to select the data file, look for data files in the Data directory. Listen 1, which takes command line arguments, requires the relative pathname to be specified on the command line, i.e. ../Data/sample_data. Listen 4, the module version, depends upon the parent program to provide it with data.

The TF directory contains a utility for creating transfer functions. See Section A.6.

A.2 Listen 1

Listen 1 uses the SGI internal audio chip and the SGI audio library (requires audio.h) to create a sonification. You should make sure that the audio library is installed on your system. Listen 1 does not use a graphical interface, so the XForms library is not required.

Listen 1 takes command line arguments to define a sonification. The user specifies the name of a data file and an optional mapping. If no mapping is given on the command line, field 1 of the data file is mapped to pitch by default.

The data file format is simply a list of scalar or vector-valued data values, with each line of the file representing one data value and each value on a line representing one field of the vector. A file may contain up to MAX_FIELDS data fields. MAX_FIELDS is defined in listen.h. The currently supported value of MAX_FIELDS is 10. All vector-valued data values in a file must be of the same size (contain the same number of data fields).

A mapping consists of a flag (-P, -D, -V, and/or -L) representing the sound parameters pitch, duration, volume and location, followed by the number of the data field to be mapped to that sound parameter.

The command format is:

listen filename [(-P | -D | -V | -L) field_number]*
For example, the command:

listen ../Data/sample_data -P 1

takes data from the file sample_data in the Data directory and maps the first field of each data value to pitch.

A single data field of a vector-valued data value can be mapped to one or more sound parameters, or up to 4 different fields of each vector value can be mapped to different sound parameters.

For example, the command:

listen ../Data/tenfields -P 1 -V 3 -D 5 -L 5

takes data from the file tenfields in the Data directory and maps field 1 to pitch, field 3 to volume, field 5 to duration, and field 5 to location. In this case, field 5 controls two sound parameters, duration and location.

The command:

listen -help

gives a verbose help message with examples.
Because Listen 1 has no graphical interface, the default values of the sound parameters pitch, volume, and duration can only be changed by editing their values in listen.h and recompiling the program.

A.3 Listen 2

Listen 2 uses the SGI internal audio chip and the SGI audio library (requires audio.h) to create a sonification. You should make sure that the audio library is installed on your system.

Listen 2 uses a graphical interface provided by the XForms library, a graphical user interface toolkit for X. XForms uses only the services provided by Xlib. You should make sure that both X and the XForms library are installed on your system. For information on how to obtain XForms, see Section A.1.

To invoke the program, type:

listen
The top section of the graphical interface provides information about the data file. The Open Data File button causes a file browser to appear that lists the contents of the Data directory and allows the user to choose a data file. When a data file has been selected, the name of the file, the number of data values it contains, and the number of data fields per data value appear in the top section of the interface.

The data file format is simply a list of scalar or vector-valued data values, with each line of the file representing one data value and each value on a line representing one field of a vector. A file may contain up to MAX_FIELDS data fields. MAX_FIELDS is defined in listen.h. The currently supported value of MAX_FIELDS is 10. All vector-valued data values in a file must be of the same size (contain the same number of data fields).

The next section of the graphical interface allows the user to create a mapping of the data values to the sound parameters. Four counters allow the user to select a data field to be mapped to any or all of the four sound parameters: pitch, duration, volume, and location. Any data field can control any or all of the sound parameters. Any sound parameter that is not mapped to a data field will take on a default value.

Next to the four counters that map the data fields to the sound parameters, there are MIN and MAX sliders. When a data field is selected to be mapped to one of the sound parameters, the minimum and maximum values of that data field appear as the bounds on both sliders. The MIN slider is set to the minimum value and the MAX slider is set to the maximum value by default. To sonify a subset of the data values, the MIN and MAX sliders for that data field can be used to define the subset. Because a data field can be used to control more than one sound parameter, the MIN and MAX sliders for all sound parameters that are controlled by the same data field will move together, so that the subset of values to be sonified will remain consistent.

The lower left section of the graphical interface contains sliders that control the minimum, maximum, and default values of the sound parameters: pitch, duration, and volume. The minimum and maximum values of the location parameter are always far left and far right. The default value of location is always centered. While a sonification is playing, the minimum, maximum, and default values of any sound parameter that is not controlled by data can be changed, making it possible, for example, to adjust the volume of the sonification.

The lower right section of the graphical interface contains a Timbre menu, which allows the user to vary the timbre used for the sonification. Currently supported timbres are sine wave and square wave.

The lower right section of the graphical interface contains the SAVE and LOAD buttons, which allow the user to save an interesting sonification so that it can be recreated. The input window below the SAVE and LOAD buttons allows the user to specify the name of the file to which to save the sonification or from which to load a previously saved sonification. The SAVE function saves the name of the current data file, the mapping information, the range and default values of the sound parameters, and the timbre used for the sonification. To reload a sonification, enter its file name in the input window and press the LOAD button. The graphical interface will reflect the sonification values that have been loaded.

The lower right section of the graphical interface contains the buttons: STOP, PAUSE, PLAY, HELP, and EXIT. Press the PLAY button to play a sonification. At any time while a sonification is playing, pressing the PAUSE button will pause the sonification. When paused, pressing either the PLAY or PAUSE button will cause the sonification to continue playing from where it left off. Pressing the STOP button will abort the sonification.

The HELP button presents a step-by-step tutorial. The EXIT button exits the Listen program.

A.4 Listen 3

Listen 3 uses an external MIDI device and the SGI MIDI library (requires dmedia/midi.h) to create a sonification. You should make sure that the MIDI library is installed on your system. A serial-to-midi converter is required to connect the MIDI device to one of the serial ports of the SGI workstation. The SGI documentation (Digital Media Developer's Guide) specifies a Macintosh converter, but not all Macintosh converters work with all SGI workstations. Our workstation is an Indigo Extreme 2 and we have had good results using the Opcode II (tm) MIDI translator. If you have problems making the MIDI device work, you may need to try a different converter. Good advice and answers to questions can be obtained from the newsgroup: comp.sys.sgi.audio.

Connection of the MIDI device should be done by the system administrator, since the workstation will have to be powered down to make the connections and the serial port settings must be made by someone with root permission.

Listen 3 uses a graphical interface provided by the XForms library, a graphical user interface toolkit for X. XForms uses only the services provided by Xlib. You should make sure that both X and the XForms library are installed on your system. For information on how to obtain XForms, see Section A.1.

To invoke the program, type:

listen
The top left section of the graphical interface provides information about the data file. The Open Data File button causes a file browser to appear that lists the contents of the Data directory and allows the user to choose a data file. When a data file has been selected, the name of the file and the number of data values it contains appear in the top left section of the interface.

The data file format is simply a list of scalar or vector-valued data values, with each line of the file representing one data value and each value on a line representing one field of a vector. A file may contain up to MAX_FIELDS data fields. MAX_FIELDS is defined in listen.h. The currently supported value of MAX_FIELDS is 10. All vector-valued data values in a file must be of the same size (contain the same number of data fields).

The central left section of the interface contains an entry for each possible data field. When a data file has been selected, a number will appear in this section for each valid data field.

The central left section also contains menus that allow the user to select a timbre, or instrument voice, for each data field and to map any valid data field to any of the sound parameters. If no timbre is selected for a data field, that data field will not be played, unless it is mapped to duration. It is possible to use one of the data fields to control only the duration of the sound without making a sound of its own provided that other fields are being played at the same time. If a data field is not mapped to a sound parameter, that data field will not be played. Each data field has MIN and MAX sliders associated with it. The minimum and maximum values of that data field appear as the bounds on both sliders. The MIN slider is set to the minimum value and the MAX slider is set to the maximum value by default. To sonify a subset of the data values, the MIN and MAX sliders for that data field can be used to define the subset.

Note that it is not possible, as it is in Listen 2, to have one data field control more than one sound parameter. Each data field can be mapped to only one sound parameter.

The lower left section of the interface indicates the number of fields that are mapped to each sound parameter and the minimum and maximum values of the fields that are mapped to each sound parameter. If, for example, fields 1 and 2 are mapped to pitch, the minimum value will be either the minimum value of field 1 or field 2, whichever is less, and the maximum value will be either the maximum value of field 1 or field 2, whichever is greater. All the values of fields 1 and 2 will be mapped using these minimum and maximum values, so that identical data values will produce identical values of the sound parameter. In this way, the values of two fields can be compared by mapping them to pitch, for instance, so that when the two fields contain equal values, notes of identical pitch will be played, and when they contain different values, the difference between the notes will be proportional to the difference between the values.

Note that only one field can be mapped to the duration parameter, since that parameter determines the duration of the sound to be played and it would be meaningless to define a note with more than one duration.

The upper right section of the interface contains buttons that allow the user to choose the scale mode to be used for a sonification. The modes are: semitone, wholenote, and 7-tone. The semitone scale consists of notes that are one half-step apart. The wholenote scale consists of notes that are one whole step apart. The 7-tone scale consists of the notes of a major scale. Each scale will give a different feeling to a sonification. It is important to keep in mind that the semitone scale provides 60 notes to which the data can be mapped, while the wholenote scale provides 30, and the 7-tone, or major, scale provides 35.

The central right section of the interface contains sliders that control the minimum, maximum, and default values of the sound parameters: pitch, duration, and volume. The minimum and maximum values of the location parameter are always far left and far right. The default value of location is always centered. While a sonification is playing, the minimum, maximum, and default values of any sound parameter that is not controlled by data can be changed, making it possible, for example, to adjust the volume of the sonification.

The TRANSFER FUNCTION menu allows the user to select the function to use to map the data to the sound parameters. The default mapping is a linear mapping. An inverse function is also provided as an example. New transfer functions can be created using the transfer function design program. See Section A.5 for more information about the transfer function module. The TFS subdirectory contains the files that define the available transfer functions.

The lower section of the graphical interface contains the SAVE and LOAD buttons, which allow the user to save an interesting sonification so that it can be recreated. The input window below the SAVE and LOAD buttons allows the user to specify the name of the file to which to save the sonification or from which to load a previously saved sonification. The SAVE function saves the name of the current data file, the mapping information, the range and default values of the sound parameters, and the timbres used for the sonification. To reload a sonification, enter its file name in the input window and press the LOAD button. The graphical interface will reflect the sonification values that have been loaded.

The lower right section of the graphical interface contains the buttons: STOP, PAUSE, PLAY, HELP, and EXIT. Press the PLAY button to play a sonification. At any time while a sonification is playing, pressing the PAUSE button will pause the sonification. When paused, pressing either the PLAY or PAUSE button will cause the sonification to continue playing from where it left off. Pressing the STOP button will abort the sonification.

The HELP button presents a step-by-step tutorial. The EXIT button exits the Listen program.

A.5 Listen 4

Listen 4 uses an external MIDI device and the SGI MIDI library (requires dmedia/midi.h) to create a sonification. You should make sure that the MIDI library is installed on your system. A serial-to-midi converter is required to connect the MIDI device to one of the serial ports of the SGI workstation. The SGI documentation (Digital Media Developer's Guide) specifies a Macintosh converter, but not all Macintosh converters work with all SGI workstations. Our workstation is an Indigo Extreme 2 and we have had good results using the Opcode II (tm) MIDI translator. If you have problems making your MIDI device work, you may need to try a different converter. Good advice and answers to questions can be obtained from the newsgroup: comp.sys.sgi.audio.

Connection of the MIDI device should be done by the system administrator, since the workstation will have to be powered down to make the connections and the serial port settings must be made by someone with root permission.

Listen 4 uses a graphical interface provided by the XForms library, a graphical user interface toolkit for X. XForms uses only the services provided by Xlib. You should make sure that both X and the XForms library are installed on your system. For information on how to obtain XForms, see Section A.1.

Listen 4 is a module that is intended to be incorporated into a visualization program. A driver program is provided so that the module can be tested and to provide an example of how to incorporate it into another program.

To invoke the driver program, type:

driver
Because the data will be sent to the Listen module by the parent program, Listen 4 does not read the data from a file, so the file information sections of the graphical interface that appeared in the interfaces of Listen 2 and Listen 3 are not included in the interface of Listen 4.

The top left section of the interface contains an entry for each data stream that can be defined by the parent program. (Data streams are analogous to data fields.) The parent program can define up to MAX_FIELDS data streams to be sonified. MAX_FIELDS is defined in listen.h. As in Listen 3, this section contains menus that allow the user to select a timbre, or instrument voice, for each data stream and to map any valid data stream to any of the sound parameters. If no timbre is selected for a data stream, that data stream will not be played, unless it is mapped to duration. It is possible to use one of the data fields to control only the duration of the sound without making a sound of its own provided that other fields are being played at the same time. If a data stream is not mapped to a sound parameter, that data stream will not be played. Each data stream has MIN and MAX sliders associated with it. The minimum and maximum values of that data stream appear as the bounds on both sliders. The MIN slider is set to the minimum value and the MAX slider is set to the maximum value by default. To sonify a subset of the data values, the MIN and MAX sliders for that data stream can be used to define the subset.

Note that it is not possible, as it is in Listen 2, to have one data stream control more than one sound parameter. Each data stream can be mapped to only one sound parameter.

The lower left section of the interface indicates the number of data streams that are mapped to each sound parameter and the minimum and maximum values of the data streams that are mapped to each sound parameter. If, for example, data streams 1 and 2 are mapped to pitch, the minimum value will be either the minimum value of data stream 1 or data stream 2, whichever is less, and the maximum value will be either the maximum value of data stream 1 or data stream 2, whichever is greater. All the values of data streams 1 and 2 will be mapped using these minimum and maximum values, so that identical data values will produce identical values of the sound parameter. In this way, the values of two streams can be compared by mapping them to pitch, for instance, so that when the two streams contain equal values, notes of identical pitch will be played, and when they contain different values, the difference between the notes will be proportional to the difference between the values.

Note that only one data stream can be mapped to the duration parameter, since that parameter determines the duration of the sound to be played and it would be meaningless to define a note with more than one duration.

The upper right section of the interface contains buttons that allow the user to choose the scale mode to be used for a sonification. The modes are: semitone, wholenote, and 7-tone. The semitone scale consists of notes that are one half-step apart. The wholenote scale consists of notes that are one whole step apart. The 7-tone scale consists of the notes of a major scale. Each scale will give a different feeling to a sonification. It is important to keep in mind that the semitone scale provides 60 notes to which the data can be mapped, while the wholenote scale provides 30, and the 7-tone, or major, scale provides 35.

The central right section of the interface contains sliders that control the minimum, maximum, and default values of the sound parameters: pitch, duration, and volume. The minimum and maximum values of the location parameter are always far left and far right. The default value of location is always centered. While a sonification is playing, the minimum, maximum, and default values of any sound parameter that is not controlled by data can be changed, making it possible, for example, to adjust the volume of the sonification.

The TRANSFER FUNCTION menu allows the user to select the function to use to map the data to the sound parameters. The default mapping is a linear mapping. An inverse function is also provided as an example. New transfer functions can be created using the transfer function design program. See Section A.5 for more information about the transfer function module. The TFS subdirectory contains the files that define the available transfer functions.

The lower section of the graphical interface contains the SAVE and LOAD buttons, which allow the user to save an interesting sonification so that it can be recreated. The input window below the SAVE and LOAD buttons allows the user to specify the name of the file to which to save the sonification or from which to load a previously saved sonification. The SAVE function saves the mapping information, the range and default values of the sound parameters, and the timbres used for the sonification. To reload a sonification, enter its file name in the input window and press the LOAD button. The graphical interface will reflect the sonification values that have been loaded.

The lower right section of the graphical interface contains the buttons: HELP and EXIT. There is no PLAY button, as there is in Listen 2 and Listen 3, because it is up to the parent program to issue the 'play' commands. The HELP button presents some general information about the Listen module. The EXIT button hides the Listen interface but does not reset any of its settings.

The code for Listen 4 contains detailed information about how to incorporate the module into another program. The driver provides an example.

A.6 Transfer Function Utility

The TF directory contains a utility program that allows the user to create transfer functions to use for mapping data to the sound parameters. The transfer function utility uses SGI's gl library and the XForms library.

The transfer functions are saved as files, which should be placed in the TFS subdirectory of the Listen 3 and/or Listen 4 directory. Adding the new functions to Listen requires editing and recompiling the program. Follow the example provided by the existing transfer functions.

The transfer function utility allows the user to design a transfer function interactively. This utility was originally intended to be used to create RGBA transfer functions, so the terminology of the module is expressed in terms of color. Red represents pitch, green represents duration, blue represents volume, and white represents location.

See the README file in the TF directory for information about how to create new transfer functions.

References

[Astheimer, 1993] P. Astheimer. Sonification Tools to Supplement Dataflow Visualization. In Patrizia Palamidese, editor, Scientific Visualization: Advanced Software Techniques, pages 15-36. Ellis Horwood, 1993.

[Barrass and Robertson, 1995] Stephen Barrass and Philip K. Robertson. Data exploration with sound using a perceptually linearized sound space. SPIE ’95, 1995.

[Barrass, 1994a] Stephen Barrass. A naturally ordered geometric model of sound inspired by colour theory. Synaesthetica '94, 1994.

[Barrass, 1994b] Stephen Barrass. A perceptual framework for the auditory display of scientific data. ICAD '94, 1994.

[Barrass, 1995] Stephen Barrass. Personify: a toolkit for perceptually meaningful sonification. ACMA '95, 1995.

[Blattner et al., 1989] M. Blattner, M. Sumikawa, and R. Greenberg. Earcons and Icons: Their Structure and Common Design Principles. Human-Computer Interaction, (4):11-44, 1989.

[Blattner et al., 1992] M. Blattner, R.M. Greenberg and M. Kamegai. Listening to Turbulence: An Example of Scientific Audiolization. In M. M. Blattner and R. B. Dannenberg, editors, Multimedia Interface Design, pages 87-107. Addison-Wesley, 1992.

[Bly, 1982] S. Bly. Sound and computer information presentation. Unpublished doctoral dissertation, University of California, Davis, 1982.

[Braut, 1994] Christian Braut. The Musician’s Guide To MIDI. Sybex, 1994.

[Bregman, 1984] A. S. Bregman. Auditory scene analysis. Proceedings of the 7th International Conference on Pattern Recognition, pages 168-175, 1984.

[Brown, 1982] Marc H. Brown. An Introduction to Zeus: Audiovisualization of some elementary sequential and parallel sorting algorithms, CHI '92 Conference Proceedings, pages 663-664, 1992.

[Buxton, 1990] Bill Buxton. Using our Ears: An Introduction to the Use of Nonspeech Audio Cues. SPIE, 1259:124-127, 1990.

[Frysinger, 1990] Steven P. Frysinger. Applied research in auditory data representation, SPIE, 1259:130-139, 1990.

[Gaver, 1986] William W. Gaver. Auditory Icons: Using Sound in Computer Interfaces, Human-Computer Interaction, 2(2):167-177, 1986.

[Gaver, 1989] William W. Gaver. The SonicFinder: An Interface That Uses Auditory Icons. Human-Computer Interaction,4:67-94, 1989.

[Grey, 1975] J. M. Grey. Exploration of Musical Timbre. Technical Report STAN-M-2, Stanford University, CCRMA Dept. of Music, 1975.

[Grinstein and Pickett, 1989] G.G. Grinstein and R.M. Pickett. Exvis - An Exploratory Visualization Environment. Proceedings of Graphics Interface '89, 1989.

[Jameson, 1994] David H. Jameson. Sonnet: Audio-Enhanced Monitoring and Debugging. In Gregory Kramer, editor, Auditory Display: Sonification, Audification, and Auditory Interfaces, pages 253-265. Addison-Wesley, 1994.

[Kramer, 1994] Gregory Kramer. Some Organizing Principles for Representing Data with Sound. In Gregory Kramer, editor, Auditory Display: Sonification, Audification, and Auditory Interfaces, pages 185-221. Addison-Wesley, 1994.

[Lodha et al., 1996a] Suresh K. Lodha, Alex T. Pang, Bob Sheehan and Craig M. Wittenbrink. Uflow: Visualizing uncertainty in fluid flow. Technical report, University of California at Santa Cruz, 1996.

[Lodha et al., 1996b] Suresh K. Lodha, Bob Sheehan, Alex T. Pang and Craig M. Wittenbrink. Visualizing geometric uncertainty of surface interpolants. To appear, 1996.

[Lunney and Morrison, 1990] David Lunney and Robert C. Morrison. Auditory Presentation of Experimental Data. SPIE, 1259:140-146, 1990.

[Madhyastha and Reed, 1994] Tara Madhyastha and Daniel Reed. A Framework for Sonification Design. In Gregory Kramer, editor, Auditory Display: Sonification, Audification and Auditory Interfaces, pages 267-290. Addison-Wesley, 1994.

[Madhyastha and Reed, 1995] Tara Madhyastha and Daniel Reed. Data Sonification: Do You Hear What I See? IEEE Software, 12(2):85-90, March 1995.

[Madhyastha, 1992] Tara Madhyastha. Portable System for Data Sonification. Technical Report UIUCDCS-R-92-1761, University of Illinois at Urbana-Champaign, UIUC, 1992.

[Mansur et al., 1985] D.L. Mansur, M.M. Blattner and K.I. Joy.
Sound-graphs: A numerical data analysis method for the blind. Proceedings of the 18th Hawaiian International Conference on System Sciences, 18:163-174, 1985.

[Mansur, 1984] D.L. Mansur. Graphs in Sound: A Numerical Data Analysis Method for the Blind. Unpublished thesis, University of California, Davis, 1984.

[Mezrich et al., 1984] J.J. Mezrich and S. Frysinger and R. Slivjanovski. Dynamic representation of multivariate time series data. Journal of the American Statistical Association, 79:34-40, 1984.

[Minghim and Forrest, 1995] R. Minghim and A.R. Forrest. An Illustrated Analysis of Sonification for Scientific Visualization. IEEE, pages 110-117, 1995.

[Pollack and Ficks, 1954] I. Pollack and L. Ficks. Information of Elementary Multidimensional Auditory Displays. Journal of the Acoustical Society of America, 6(2):155-158, 1954.

[Rabenhorst et al., 1990] David A. Rabenhorst, Edward J. Farrell, David H. Jameson, Thomas D. Linton and Jack A. Mandelman. Complementary Visualization and Sonification of Multi-Dimensional Data. SPIE, 1259:147-153, 1990.

[Ridge et al., 1994] Peter M. Ridge, David M. Golden, Ivan Luk and Scott Sindorf. Sound Blaster: The Official Book, Second Edition, McGraw-Hill, 1994.

[Scaletti and Craig, 1991] Carla Scaletti and A.B. Craig. Using sound to extract meaning from complex data. SPIE, 1459:206-219, 1991.

[Scaletti, 1993] Carla Scaletti. Sonification: An Ancient Idea Made Feasible by New Technology. In Course Notes 81: An Introduction to Data Sonification, pages 4.2-4.6. SIGGRAPH, 1993.

[Scaletti, 1994] Carla Scaletti. Sound Synthesis Algorithms for Auditory Data Representations. In Gregory Kramer, editor, Auditory Display: Sonification, Audification, and Auditory Interfaces, pages 223-251. Addison-Wesley, 1994.

[Slawson, 1968] A.W. Slawson. Vowel quality and musical timbre as functions of spectrum envelope and fundamental frequency. Journal of the Acoustical Society of America, 43:87-101, 1968.

[Smith and Williams, 1989] Stuart Smith and Marian G. Williams. The Use of Sound in an Exploratory Visualization Environment. Technical Report R-89-002, University of Lowell, 1989.

[Smith et al., 1990] Stuart Smith, R. Daniel Bergeron and Georges G. Grinstein. Stereophonic and Surface Sound Generation for Exploratory Data Analysis. CHI '90 Conference Proceedings, pages 125-132, 1990.

[Speeth, 1961] S. D. Speeth. Seismometer sounds. Journal of the Acoustical Society of America, 33:909-916, 1961.

[Stuart, 1995] Rory Stuart. Audio Display from the Simple Beep to Sonification and Virtual Auditory Environments. In Francis T. Marchese , editor, Understanding Images, Finding Meaning in Digital Imagery, pages 283-307. Springer-Verlag, 1995.

[von Bismarck, 1974a] G. von Bismarck. Sharpness as an Attribute of the Timbre of Steady State Sounds. Acustica, 30:159, 1974.

[von Bismarck, 1974b] G. von Bismarck. Timbre of Steady State Sounds: a factorial investigation of its verbal attributes. Acustica, 30:146-159, 1974.

[Yeung, 1980] E.S. Yeung. Pattern Recognition by Audio Representation of Multivariate Analytical Data. Analytical Chemistry, 52(7):1120-1123, 1980.

[Zhao and Overmars, 1996] T.C. Zhao and M. Overmars. Forms Library, A Graphical User Interface Toolkit for X, Version 0.80. Department of Physics, University of Wisconsin-Milwaukee, 1996.

1
iv

