
Chapter 24

RANGE DATA

This chapter discusses range images that store, instead of
brightness or color information, the depth at which the ray associated with each

pixel first intersects the scene observed by a camera. In a sense, a range image is
exactly the desired output of stereo, motion, or other shape-from vision modules.
In this chapter, however, we will focus our attention on range images acquired
by active sensors, that project some sort of light pattern on the scene, using it to
avoid the difficult and costly problem of establishing correspondences and construct
dense and accurate depth pictures. After a brief review of range sensing technology,
this chapter will discuss image segmentation, multiple-image registration and three-
dimensional model construction, and object recognition, and explore the aspects of
these problems that are specific to the range data domain.

24.1 Active Range Sensors

Triangulation-based range finders date back to the early seventies (e.g., [Agin, 1972;
Shirai, 1972]). They function along the same principles as passive stereo vision
systems, one of the cameras being replaced by a source of controlled illumination
(structured light) that avoids the correspondence problem mentioned in Chapter 13.
For example, a laser and a pair of rotating mirrors may be used to sequentially scan
a surface. In this case, as in conventional stereo, the position of the bright spot
where the laser beam strikes the surface of interest is found as the intersection of
the beam with the projection ray joining the spot to its image. Contrary to the
stereo case, however, the laser spot can normally be identified without difficulty
since it is in general much brighter than the other scene points (in particular when
a filter tuned to the laser wavelength is inserted in front of the camera), altogether
avoiding the correspondence problem.
Alternatively, the laser beam can be transformed by a cylindrical lens into a

plane of light (Figure 24.1). This simplifies the mechanical design of the range finder
since it only requires one rotating mirror. More importantly, perhaps, it shortens
the time required to acquire a range image since a laser stripe –the equivalent of a
whole image column– can be acquired at each frame. It should be noted that this
setup does not introduce matching ambiguities since the spot associated with each
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pixel can be retrieved as the (unique) intersection of the corresponding projection
ray with the plane of light.

Surface

Camera

Laser
p

P

Figure 24.1. A range sensor using a plane of light to scan the surface of an object.

Variants of these two techniques include using multiple cameras to improve
measurement accuracy and exploiting (possibly time-coded) two-dimensional light
patterns to improve data acquisition speed. The main drawbacks of the active tri-
angulation technology are relatively low acquisition speed, missing data at points
where the laser spot is hidden from the camera by the object itself, and missing
or erroneous data due to specularities. The latter difficulty is actually common to
all active ranging techniques: a purely specular surface will not reflect any light
in the direction of the camera unless it happens to lie in the corresponding mirror
direction. Worse, the reflected beam may induce secondary reflections giving false
depth measurements. Additional difficulties include keeping the laser stripe in fo-
cus during the entire scanning procedure, and the loss of accuracy inherent in all
triangulation techniques as depth increases.
Several triangulation-based scanners are commercially available today. Figure

24.2 shows an example obtained using the Minolta VIVID range finder, that can
acquire a 200× 200 range image together with a registered 400 × 400 color image
in 0.6s, within an operating range of 0.6 to 2.5m.
The second main approach to active ranging involves a signal transmitter, a

receiver, and electronics for measuring the time of flight of the signal during its
round trip from the range sensor to the surface of interest. This is the princi-
ple used in the ultrasound domain by the Polaroid range finder, commonly used
in autofocus cameras from that brand and in mobile robots, despite the fact that
the ultrasound wavelength band is particularly susceptible to false targets due to
specular reflections. Time-of-flight laser range finders are normally equipped with
a scanning mechanism, and the transmitter and receiver are often coaxial, elimi-
nating the problem of missing data common in triangulation approaches. There
are three main classes of time-of-flight laser range sensors: pulse time delay tech-
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Figure 24.2. Range data captured by the Minolta VIVID scanner. As in most of the
figures in this chapter, the mesh of (x, y, z(x, y)) points associated with the image is shown
in perspective. Reprinted from [Hebert, 2000], Figure 6.

nology directly measures the time of flight of a laser pulse; AM phase-shift range
finders measure the phase difference between the beam emitted by an amplitude-
modulated laser and the reflected beam, a quantity proportional to the time of flight;
finally, FM beat sensors measure the frequency shift (or beat frequency) between a
frequency-modulated laser beam and its reflection, another quantity proportional
to the round-trip flight time.
Time-of-flight range finders face the same problems as any other active sensors

when imaging specular surfaces. They can be relatively slow due to long integration
time at the receiver end. The speed of pulse-time delay sensors is also limited by the
minimum resolvable interval between two pulses. AM phase-shift range finders suffer
from inherent ambiguities since depth differences corresponding to phase shifts that
are multiples of 2π cannot be resolved. This is a relatively minor problem since
absolute range can normally be recovered by exploiting spatial coherence in the
image, i.e., starting from the image points closest to the sensor, absolute depth can
be propagated from one ambiguity interval to the next by a simple region-growing
procedure. Compared to triangulation-based systems, time-of-flight sensors have
the advantage of offering a greater operating range (up to tens of meters), which is
very valuable in outdoor robotic navigation tasks.
Figure 24.3 shows range data acquired by a high-end AM phase-shift scanner

[Hancock et al., 1998], capable of acquiring 150,000 samples per second at a maxi-
mum range of 57m with an accuracy of 34mm.
As noted earlier, many range finders are now available commercially for a wide

range of prices and applications. New technologies also continue to emerge, includ-
ing range sensors equipped with acoustico-optical scanning systems and capable of
extremely high image acquisition rates, and range cameras that eliminate scanning
altogether, using instead a large array of receivers to analyze a laser pulse covering
the entire field of view. Figure 24.4 shows an example of the latter technology,
with images acquired by the Zcam range camera from 3DVSystems, which records
full-frame registered range and color images at 30Hz with a depth resolution of
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Figure 24.3. Range data captured by the AM phase shift range finder described in
[Hancock et al., 1998]: (left) range and intensity images; (right) perspective plot of the
range data. Reprinted from [Hebert, 2000], Figure 5.

up to 10bits. To learn more, the interested reader should consult [Hebert, 2000]

for an excellent discussion of current range finder technology, including a dozen of
representative commercial products.

Figure 24.4. Range and color images captured by the Zcam range camera from 3DVSys-
tems. Reprinted from [Hebert, 2000], Figure 10.

24.2 Range Data Segmentation

This section adapts some of the edge detection and segmentation methods intro-
duced in Chapters ?? and ?? to the specific case of range images. As will be
shown in the rest of this section, the fact that surface geometry is readily available
greatly simplifies the segmentation process, mainly because this provides objec-
tive, physically-meaningful criteria for finding surface discontinuities and merging
contiguous patches with a similar shape. But let us start by introducing some ele-
mentary notions of analytical differential geometry, which will turn out to form the
basis for the approach to edge detection in range images discussed in this section.
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Technique: Analytical Differential Geometry

Here we revisit the notions of differential geometry introduced in Chapter 5 in an ana-
lytical setting. Specifically, we consider a parametric surface defined as the smooth (i.e.,
indefinitely differentiable) mapping x : U ⊂ IR2 → IR3 that associates with any couple
(u, v) in the open subset U of IR2 the coordinate vector x(u, v) of a point in some fixed
coordinate system. To ensure that the tangent plane is everywhere well defined, we will

assume that the partial derivatives xu
def
= ∂x/∂u and xv

def
= ∂x/∂v are linearly indepen-

dent. Indeed, let α : I ⊂ IR → U denote a smooth planar curve, with α(t) = (u(t), v(t)),

then β
def
= x ◦ α is a parameterized space curve lying on the surface. According to the

chain rule, a tangent vector to β at the point β(t) is u′(t)xu+ v
′(t)xv , and it follows that

the plane tangent to the surface in x(u, v) is parallel to the vector plane spanned by the
vectors xu and xv . The (unit) surface normal is thus

N =
1

|xu × xv |
(xu × xv).

Let us consider a vector t = u′xu+v
′xv in the tangent plane at the point x. It is easy

to show that the second fundamental form is given by

II(t, t) = t · dN(t) = eu′2 + 2fu′v′ + gv′2,

where1

e = −N · xuu, f = −N · xuv , g = −N · xvv.

Now if we define the first fundamental form as the bilinear form that associates with
two vectors in the tangent plane their dot product, i.e.,

I(u,v)
def
= u · v,

then we have
I(t, t) = |t|2 = Eu′2 + 2Du′v′ +Gv′2,

where
E = xu · xu, F = xu · xv , G = xv · xv .

It follows immediately that the normal curvature in the direction t is given by

κt =
II(t, t)

I(t, t)
=

eu′2 + 2fu′v′ + gv′2

Eu′2 + 2Du′v′ +Gv′2
.

Likewise, it is easily shown that the matrix associated with the differential of the Gauss
map in the basis (xu,xv) of the tangent plane is

dN(t) =

(
e f
f g

)(
E F
F G

)−1

;

thus, since the Gaussian curvature is equal to the determinant of the operator dN , it is
given by

K =
eg − f2

EG− F 2 .

1The definition of e, f and g is in keeping with the orientation conventions defined in Chapter
5. These coefficients are usually defined with opposite signs (e.g. [do Carmo, 1976; Struik, 1988]).
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Asymptotic and principal directions are also easily found by using this parameteriza-
tion: since an asymptotic direction verifies II(t, t) = 0, the corresponding values of u′ and
v′ are the (homogeneous) solutions of eu′2 + 2fu′v′ + gv′2 = 0. The principal directions,
on the other hand, can be shown to verify

v′2 −u′v′ u′2

E F G

e f g

= 0. (24.2.1)

Example 1. An important example of parametric surface is provided by Monge patches:
consider the surface x(u, v) = (u, v, h(u, v)). In this case we have


N =

1

(1 + h2
u + h

2
v)

1/2

(
−hu
−hv
1

)
,

E = 1+ h2
u, F = huhv , G = 1 + h

2
v ,

e = −
huu

(1 + h2
u + h

2
v)

1/2 , f = −
huv

(1 + h2
u + h

2
v)

1/2 , g = −
hvv

(1 + h2
u + h

2
v)

1/2 ,

and the Gaussian curvature has a simple form:

K =
huuhvv − h

2
uv

(1 + h2
u + h

2
v)

2
.

Example 2. Another fundamental example is provided by the local parameterization of
a surface in the coordinate system formed by its principal directions. This is of course
a special case of a Monge patch. Writing that the origin of the coordinate system lies
in the tangent plane immediately yields h(0, 0) = hu(0, 0) = hv(0, 0) = 0. As expected,
the normal is simply N = (0, 0, 1)T at the origin, and the first fundamental form is the
identity there.

As shown in the exercises, it follows easily from (24.2.1) that a necessary and sufficient
condition for the coordinate curves of a parameterized surface to be principal directions
is that f = F = 0 (this implies, for example, that the lines of curvature of a surface of
revolution are its meridians and parallels). In our context we already know that F = 0 and
this condition reduces to huv(0, 0) = 0. The principal curvatures in this case are simply
κ1 = e/E = −huu(0, 0) and κ2 = g/G = −hvv(0, 0).

In particular, we can write a Taylor expansion of the height function in the neighbor-
hood of (0, 0) as

h(u, v) = h(0, 0)+uhu(0, 0)+vhv(0, 0)+
1

2
(u, v)

(
huu(0, 0) huv(0, 0)
huv(0, 0) hvv(0, 0)

)(
u

v

)
+ε(u2+v2)3/2,

which shows that the best second-order approximation to the surface in this neighborhood
is the paraboloid defined by

h(u, v) = −
1

2
(κ1u

2 + κ2v
2),

i.e., the expression already encountered in Chapter 5.
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24.2.1 Finding Step and Roof Edges in Range Images

This section presents a method for finding instances of various types of edge models
in range images [Ponce and Brady, 1987]. This technique combines tools from
analytical differential geometry and scale-space image analysis to detect and locate
depth and orientation discontinuities in range data. Figure 24.5 shows a 128× 128
range image of a motor oil bottle that will serve to illustrate the concepts introduced
in this section. This picture was acquired using the INRIA range finder [Boissonnat
and Germain, 1981], with a depth accuracy of about 0.5mm.

(a) (b)

roof

step

step

step

roof

Figure 24.5. An oil bottle: (a) a range image of the bottle and (b) a sketch of its depth
and orientation discontinuities.

The surface of the oil bottle presents two types of surface discontinuities: steps,
where the actual depth is discontinuous, and roofs, where the depth is continuous
but the orientation changes abruptly. As shown in the next section, it is possible to
characterize the behavior of analytical models of step and roof edges under Gaussian
smoothing and to show that they respectively give rise to parabolic points and ex-
trema of the dominant principal curvature in the corresponding principal direction.
This is the basis for the multi-scale edge detection scheme outlined in Algorithm
24.1 below.

Edge Models

In the neighborhood of a discontinuity, the shape of a surface changes much faster in
the direction of the discontinuity than in the orthogonal direction. Accordingly, we
will assume in the rest of this section that the direction of the discontinuity is one
of the principal directions, with the corresponding (dominant) principal curvature
changing rapidly in this direction, while the other one remains roughly equal to
zero. This will allow us to limit our attention to cylindrical models of surface
discontinuities, i.e., models of the form z(x, y) = h(x). These models are of course
only intended to be valid in the neighborhood of an edge, with the direction of the
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1. Smooth the range image with Gaussian distributions at a set of scales σi
(i = 1, . . . , 4). Compute the principal directions and curvatures at each
point of the smoothed images zσi(x, y).

2. Mark in each smoothed image zσi (x, y) the zero-crossings of the Gaussian
curvature and the extrema of the dominant principal curvature in the corre-
sponding principal direction.

3. Use the analytical step and roof models to match the features found across
scales and output the points lying on these surface discontinuities.

Algorithm 24.1: The model-based edge-detection algorithm of Ponce and Brady

[1987].

x, z plane being aligned with the corresponding dominant principal direction.
In particular, a step edge can be modeled by two sloped half-planes separated

by a vertical gap, with normals in the x− z plane. This model is cylindrical and it
is sufficient to study its univariate formulation (Figure 24.6(left)), whose equation
is

z =

{
k1x+ c when x < 0,
k2x+ c+ h when x > 0.

(24.2.2)

k1
k1

k2

k2

x

z

x

z

c

h

Step Model Roof Model

Figure 24.6. Edge models: a step consists of two half-planes separated by a distance
h at the origin, and a roof consists of two half-planes meeting at the origin with different
slopes. After [Ponce and Brady, 1987, Figure 4].

In this expression, c and h are constants, h measuring the size of the gap and
k1 and k2 the slopes of the two half-planes. Introducing the new constants k =
(k1 + k2)/2 and δ = k2 − k1, it is easy to show (see exercises) that convolving the
z function with the second derivative of a Gaussian yields

z′′σ
def
=

∂2

∂σ2Gσ ∗ z =
1

σ
√
2π
(δ −

hx

σ2 ) exp(−
x2

2σ2 ). (24.2.3)

In particular, the corresponding curvature κσ vanishes in xσ = σ2δ/h. This
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point is only at the origin when k1 = k2 and its position is a quadratic function
of σ otherwise. This suggests identifying step edges with zero-crossings of one of
the principal curvatures (or equivalently of the Gaussian curvature), whose position
changes with scale. To characterize qualitatively the behavior of these features as
a function of σ, let us also note that since z′′σ = 0 in xσ, we have

κ′′σ

κ′σ
(xσ) =

z′′′′σ

z′′σ
(xσ) = −2

δ

σ
;

in other words, the ratio of the second and first derivatives of the curvature is
independent of σ.
An analytical model for roof edges is obtained by taking h = 0 and δ �= 0 in the

step model (Figure 24.6(right)). In this case, it is easy to show (see exercises) that

κσ =
1

σ
√
2π

δ exp(−
x2

2σ2
)

1 +
(
k +

δ
√
2π

∫ x/σ

0

exp(−
u2

2
)du

)2

3/2

. (24.2.4)

It follows that, when x2 = λx1 and σ2 = λσ1, we must have κσ2 (x2) =
κσ1(x1)/λ. In turn, the maximum value of |κσ| must be inversely proportional
to σ, and it is reached at a point whose distance from the origin is proportional to
σ. This maximum tends toward infinity as σ tends toward zero, indicating that roofs
can be found as local curvature extrema. In actual range images, these extrema
should be sought in the direction of the dominant principal direction, in keeping
with our assumptions about local shape changes in the vicinity of surface edges.

Computing the Principal Curvatures and Directions

According to the models derived in the previous section, instances of step and roof
edges can be found as zero crossings of the Gaussian curvature and extrema of the
dominant principal curvature in the corresponding direction. Computing these dif-
ferential quantities requires estimating the first and second partial derivatives of the
depth function at each point of a range image. This can be done, as in Chapter ??,
by convolving the images with the derivatives of a Gaussian distribution. However,
range images are different from usual pictures: for example, the pixel values in a
photograph are usually assumed to be piecewise constant in the neighborhood of
step edges,2 which is justified for Lambertian objects since the shape of a surface
is, to first order, piecewise-planar near an edge, with a piecewise-planar intensity
in that case. On the other hand, piecewise-constant (local) models of range images
are of course unsatisfactory. Likewise, the maximum values of contrast along the
significant edges of a photograph are usually assumed to have roughly the same

2This corresponds to taking k1 = k2 = 0 in the model given in the previous section; note that
in that case zero crossings do not move as scale changes.
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magnitude. In range images, however, there are two different types of step edges:
the large depth discontinuities that separate solid objects from each other and from
their background, and the much smaller gaps that usually separate patches of the
same surface.
The edge detection scheme discussed in this section is aimed at the latter class

of discontinuities. Blindly applying Gaussian smoothing across object boundaries
will introduce radical shape changes that may overwhelm the surface details we are
interested in (Figure 24.7(top and middle)).

Figure 24.7. Smoothing a range image. Top: a slice of the range image shown in Figure
24.5. The background has been thresholded away. Middle: result of Gaussian smoothing.
Bottom: smoothing using computational molecules. Reprinted from [Ponce and Brady,
1987], Figure 14.

This suggests finding the major depth discontinuities first (thresholding will suf-
fice in many cases), then somehow restricting the smoothing process to the surface
patches enclosed by these boundaries. This can be achieved by convolving the range
image with computational molecules [Terzopoulos, 1984], i.e., linear templates that,
added together, form a 3× 3 averaging mask, e.g.,

1
2
1
+ 2 4 2 +

2

4
2
+

1
2

1
=

1 2 1

2 12 2
1 2 1

.

Repeatedly convolving the image with the 3×3 mask (normalized so its weights
add to one) yields, according to the central limit theorem, a very good approxi-
mation of Gaussian smoothing with a mask whose σ value is proportional to

√
n

after n iterations. To avoid smoothing across discontinuities, the molecules crossing
these discontinuities are not used, while the remaining ones are once again normal-
ized so the total sum of the weights is equal to one. The effect is shown in Figure
24.7(bottom).
After the surface has been smoothed, the derivatives of the height function can

be computed via finite differences. The gradient of the height function is computed
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by convolving the smoothed image with the masks:

∂

∂x
=
1

6

−1 0 1

−1 0 1
−1 0 1

and
∂

∂y
=
1

6

1 1 1

0 0 0
−1 −1 −1

,

and the Hessian is computed by convolving the smoothed image with the masks

∂2

∂x2
=
1

3

1 −2 1

1 −2 1
1 −2 1

,
∂2

∂x∂y
=
1

4

−1 0 1

0 0 0
1 0 −1

and
∂2

∂y2
=
1

3

1 1 1

−2 −2 −2
1 1 1

.

Once the derivatives are known, the principal directions and curvatures are easily
computed. Figure 24.8 shows the two sets of principal directions found for the oil
bottle after 20 iterations of the molecules. As expected, they lie along the meridians
and parallels of this surface of revolution.

Figure 24.8. The two principal direction fields for the oil bottle. Reprinted from [Brady
et al., 1985], Figure 18.

Matching Features Across Scales

Given the principal curvatures and directions, parabolic points can be detected as
(non-directional) zero-crossings of the Gaussian curvature, while local extrema of
the dominant curvature along the corresponding principal direction can be found
using the non-maximum suppresion techniques discussed in Chapter ??. Figure
24.9(a) shows the features found after 20, 40, 60, and 80 iterations of the molecule-
based smoothing operator. Although there is a considerable amount of noise at
fine resolutions (e.g., after 20 iterations only), the situation improves as smooth-
ing proceeds. Features due to noise can also be eliminated, at least in part, via
thresholding of the zero-crossing slope for parabolic points, and of the curvature
magnitude for extrema of principal curvatures (Figure 24.9(b)).
Nonetheless, experiments show that smoothing and thresholding are not suf-

ficient to eliminate as much as possible all irrelevant features. In particular, as
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(a) (b)

Figure 24.9. Features found at various scales (a) before and (b) after thresholding. Note
that the thresholds in (b) have been chosen empirically to eliminate most false features
while retaining those corresponding to true surface discontinuities. Still, artefacts such as
the extrema of curvature parallel to the axis of the bottle subsist. Reprinted from [Ponce
and Brady, 1987], Figure 12.

illustrated by Figure 24.9, curvature extrema parallel to the axis of the oil bottle
show up more and more clearly as smoothing proceeds. These are due to the fact
that points near the occluding boundary of the bottle do not get smoothed as much
by the computational molecules as points closer to its center, giving rise to artificial
curvature extrema.
A multi-scale approach to edge detection solves this problem. Features are

tracked from coarse to fine scales, all features at a given scale not having an ancestor
at a coarser one being eliminated. The evolution of the principal curvatures and
their derivatives is also monitored. Surviving parabolic features such that the ratio
κ′′σ/κ

′
σ remains (roughly) constant across scales are output as step edge points, while

directional extrema of the dominant curvature such that σκσ remains (roughly)
constant are output as roof points. Finally, since, for both our models, the distance
between the true discontinuity and the corresponding zero crossing or extremum
increases with scale, the finest scale is used for edge localization. Figure 24.10
shows the results of applying this strategy to the oil bottle and a human face mask.

24.2.2 Segmenting Range Images into Planar Regions

We saw in the last section that edge detection is implemented by quite different
processes in photographs and range data. The situation is similar for image seg-
mentation into regions. In particular, meaningful segmentation criteria are elusive
in the intensity domain because pixel brightness is only a cue to physical properties
such as shape or reflectance. In the range domain however, geometric information
is directly available, making it possible to use, say, the average distance between
a set of surface points and the plane best fitting them as an effective segmenta-
tion criterion. The region growing technique of Faugeras and Hebert [1986] is a
good example of this approach. This algorithm iteratively merges planar patches
by maintaining a graph whose nodes are the patches and arcs associated with their
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(a) (b)

Figure 24.10. Edge detection results: (a) the three step edges and two roof disconti-
nuities of the oil bottle have been correctly identified; (b) the eye, mouth, nose and brow
boundaries of a mask have been found as roof edges. Reprinted from [Ponce and Brady,
1987], Figures 16 and 22.

common boundary link adjacent patches. Each arc is assigned a cost correspond-
ing to the average error between the points of the two patches and the plane best
fitting these points. The best arc is always selected, and the corresponding patches
are merged. Note that the remaining arcs associated with these patches must be
deleted while new arcs linking the new patch to its neighbors are introduced. The
situation is illustrated by Figure 24.11.
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Figure 24.11. This diagram illustrates one iteration of the region growing process
during which the two patches incident to the minimum-cost arc labelled a are merged.
The heap shown in the bottom part of the figure is updated as well: the arcs a, b, c and e
are deleted, and two new arcs f and g are created and inserted in the heap.
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The graph structure is initialized by using a triangulation of the range data, and
it is efficiently updated by maintaining a heap of active arcs. The triangulation can
either be constructed directly from a range image (by splitting the quadrilaterals as-
sociated with the pixels along one of their diagonals), or from a global surface model
constructed from multiple images as described in the next section. The heap storing
the active arcs can be represented, for example, by an array of buckets indexed by
increasing costs, which supports fast insertion and deletion (Figure 24.11(bottom)).
Figure 24.12 shows an example, where the complex shape of an automobile part is
approximated by 60 planar patches.

(a) (b)

Figure 24.12. The Renault part: (a) photo of the part and (b) its model. Reprinted
from [Faugeras and Hebert, 1986], Figures 1 and 6.

24.3 Range Image Registration and Model Construction

Geometric models of real objects are useful in manufacturing, e.g., for process and
assembly planning or inspection. Closer to the theme of this book, they are also key
components of many object recognition systems, and are more and more in demand
in the entertainment industry, as synthetic pictures of real objects now routinely
appear in feature films and video games (we will come back to this issue in much
greater detail in Chapter 26). Range images are an excellent source of data for
constructing accurate geometric models of real objects, but a single picture will, at
best, show half of the surface of a given solid, and the construction of complete object
models requires the integration of multiple range images. This section addresses
the dual problems of registering multiple images in the same coordinate system and
fusing the three-dimensional data provided by these pictures into a single integrated
surface model.
Before attacking these two problems, let us introduce quaternions, that will

provide us with linear methods for estimating rigid transformations from point
and plane correspondences in both the registration context of this section and the
recognition context of the next one.
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Technique: Quaternions

Quaternions were invented by Hamilton [1844]. Like complex numbers in the plane,
they can be used to represent rotations in space in a very convenient manner. A quaternion
q is defined by its real part, a scalar a, and its imaginary part, a vector α in IR3, and it
is usually denoted by q = a + α. This is justified by the fact that real numbers can be
identified with quaternions with a zero imaginary part, and vectors can be identified with
quaternions with a zero real part, while addition between quaternions is defined by

(a+α) + (b+ β)
def
= (a+ b) + (α+ β).

The multiplication of a quaternion by a scalar is defined naturally by λ(a + α)
def
=

λa+ λα, and these two operations give the set of all quaternions the structure of a four-
dimensional vector space.

It is also possible to define a multiplication operation that associates with two quater-
nions the quaternion

(a+ α)(b+ β)
def
= (ab− α · β) + (aβ + bα+α× β).

Quaternions, equipped with the operations of addition and multiplication as defined
above, form a non-commutative field, whose zero and unit elements are respectively the
scalars 0 and 1.

The conjugate of the quaternion q = a+α is the quaternion q̄
def
= a−α with opposite

imaginary part. The squared norm of a quaternion is defined by

|q|2
def
= qq̄ = q̄q = a2 + |α|2,

and it is easily verified that |qq′| = |q||q′| for any pair of quaternions q and q′.
Now, it can be shown that the quaternion

q = cos
θ

2
+ sin

θ

2
u

represents the rotation R of angle θ about the unit vector u in the following sense: if α is
some vector in IR3, then

Rα = qαq̄. (24.3.1)

Note that |q| = 1 and that −q also represents the rotationR. Reciprocally, the rotation
matrix R associated with a given unit quaternion q = a+α with α = (b, c, d)T is

R =

(
a2 + b2 − c2 − d2 2(bc− ad) 2(bd + ac)

2(bc + ad) a2 − b2 + c2 − d2 2(cd − ab)
2(bd − ac) 2(cd+ ab) a2 − b2 − c2 + d2

)
,

a fact easily deduced from (24.3.1). (Note that the four parameters a, b, c, d are not inde-
pendent since they satisfy the constraint a2 + b2 + c2 + d2 = 1.)

Finally, if q1 and q2 are unit quaternions, andR1 andR2 are the corresponding rotation
matrices, the quaternions q1q2 and −q1q2 are both representations of the rotation matrix
R1R2.
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24.3.1 Registering Range Images Using the Iterative Closest-
Point Method

Besl and McKay [1992] have proposed an algorithm capable of registering two sets
of three-dimensional points, i.e., of computing the rigid transformation that maps
the first point set onto the second one. Their algorithm simply minimizes the
average distance between the two point sets by iterating over the following steps:
first establish correspondences between scene and model features by matching every
scene point to the model point closest to it, then estimate the rigid transformation
mapping the scene points onto their matches, and finally apply the computed dis-
placement to the scene. The iterations stop when the change in mean distance
between the matched points falls below some preset threshold. Pseudocode for this
iterated closest-point (or ICP) algorithm is given below.

Function ICP(Model, Scene);
begin
E’ ← +∞;
(Rot, Trans) ← Initialize-Registration(Scene, Model);
repeat
E ← E’;
Registered-Scene ← Apply-Registration(Scene, Rot, Trans);
Pairs ← Return-Closest-Pairs(Registered-Scene, Model);
(Rot, Trans, E’) ← Update-Registration(Scene, Model, Pairs, Rot, Trans);
until |E’ − E| < τ ;

return (Rot, Trans);
end.

Algorithm 24.2: The iterative closest-point algorithm of Best and McKay [1992].

The auxiliary function Initialize-Registration uses some global registration method,
based on moments for example, to compute a rough initial estimate of the rigid
transformation mapping the scene onto the model. The function Return-Closest-
Pairs returns the indices (i, j) of the points in the registered scene and the
model such that point number j is the closest to point number i. The function
Update-Registration estimates the rigid transformation between selected pairs of
points in the scene and the model, and the function Apply-Registration applies a
rigid transformation to all the points in the scene.

It can be shown that Algorithm 24.2 always converges to a local minimum of the
error E (this is intuitively clear since the registration stage decreases the average
error at each iteration, while the closest point determination decreases the individual
error as well). This does not guarantee of course, convergence to a global minimum,
and a reasonable guess for the rigid transformation sought by the algorithm must
be provided. A variety of methods are available for that purpose, including roughly
sampling the set of all possible transformations, and using the moments of both the
scene and model point sets to estimate the transformation.
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Finding the Closest-Point Pairs

At every iteration of the algorithm, finding the closest point M in the model to a
given (registered) scene point S takes (naively) O(n) time, where n is the number
of model points. In fact, various algorithms can be used to answer such a nearest-
neighbor query in IR3 in O(logn) time at the cost of additional preprocessing of
the model, using for example k-d trees [Friedman et al., 1977] (for which the log-
arithmic query time only holds on average) or more complex data structures. For
example, the general randomized algorithm of [Clarkson, 1988] takes preprocess-
ing time O(n2+ε), where ε is an arbitrarily small positive number, and query time
O(logn). The efficiency of repeated queries can also be improved by caching the
results of previous computations. For example, Simon et al. [1994] store at each
iteration of the ICP algorithm the k closest model points to each scene point (a
typical value for k is 5). Since the incremental update of the rigid transformation
is normally small, it is likely that the closest neighbor of a point after an iteration
will be among its k closest neighbors from the previous one. It is in fact possible
to determine efficiently and conclusively whether the closest point is in the cached
set, see [Simon et al., 1994] for details.

Estimating the Rigid Transformation

Under the rigid transformation defined by the rotation matrixR and the translation
vector t, a point xmaps onto the point x′ = Rx+t. Thus, given n pairs of matching
points xi and x

′
i, with i = 1, . . . , n, we seek the rotation matrix R and translation

vector t minimizing the error

E =

n∑
i=1

|x′i −Rxi − t|
2.

Let us first note that the value of t minimizing E must satisfy

0 =
∂E

∂t
= −2

n∑
i=1

(x′i −Rxi − t),

or

t = x′0 −Rx0, where x0
def
=
1

n

n∑
i=1

xi and x′0
def
=
1

n

n∑
i=1

x′i (24.3.2)

denote respectively the centroids of the two sets of points xi and x
′
i.

Introducing the centered points yi = xi − x0 and y
′
i = x

′
i − x0 (i = 1, . . . , n)

yields

E =

n∑
i=1

|y′i −Ryi|
2,
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Quaternions can now be used to minimize E as follows: let q denote the quater-
nion associated with the matrix R, we use the fact that |q|2 = 1 and the multiplica-
tivity properties of the quaternion norm to write

E =

n∑
i=1

|y′i − qyiq̄|
2|q|2 =

n∑
i=1

|y′iq− qyi|
2.

As shown in the exercises, this allows us to rewrite the rotational error as E =
qTBq, where B =

∑n
i=1A

T
i Ai, and

Ai =

(
0 yTi − y

′T
i

y′i − yi [yi + y
′
i]×

)
.

Note that the matrix Ai is antisymmetric with (in general) rank 3, but that
the matrix B will have, in the presence of noise, rank 4. As shown in Chapter
6, minimizing E under the constraint |q|2 = 1 is a (homogeneous) linear least-
squares problem whose solution is the eigenvector of B associated with the smallest
eigenvalue of this matrix. Once R is known, t is obtained from (24.3.2).

Results

Figure 24.13 shows an example, where two range images of an African mask are
matched by the algorithm. The average distance between matches is 0.59mm for
this 9cm object.

(a) (b) (c)

Figure 24.13. Registration results: (a) a range image serving as model for an African
mask; (b) a (decimated) view of the model, serving as scene data; (c) a view of the two
datasets overlaid after registration. Reprinted from [Besl and McKay, 1992], Figures 12–14.

This method is not limited to models consisting to clouds of three-dimensional
points, but applies as well to any model that supports the construction of closest-
point pairs. Figure 24.14 shows an example where a range image is matched to a
spline model of the mask. In this case, the patch point closest to a scene point is
retrieved by a simple optimization process, initialized at the center of the patch for
example (see exercises).
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(a) (b)

Figure 24.14. More registration results: (a) a parametric surface serving as model
for the mask; (b) registration of this model and the range image shown in Figure 24.13.
Reprinted from [Besl and McKay, 1992], Figures 15 and 16.

24.3.2 Fusing Multiple Range Images

Given a set of registered range images of a solid object, it is possible to construct
an integrated surface model of this object. In the approach proposed by Curless
and Levoy [1996], this model is constructed as the zero set S of a volumetric density
function D : IR3 → IR, i.e., as the set of points (x, y, z) such that D(x, y, z) = 0.
Like any other level set of a continuous density function, S is by construction guar-
anteed to be a closed, “watertight” surface, although it may have several connected
components (Figure 24.15)

0D=D

0z=zPlane

z

y

x

Level curve

Figure 24.15. A 2D illustration of volumetric density functions and their level sets. In
this case, the “volume” is of course the (x, y) plane, and the “surface” is a curve in this
plane, with two connected components in the example shown here.

The trick, of course, is to construct an appropriate density function from reg-
istered range measurements. Curless and Levoy embed the corresponding surface
fragments into a cubic grid, and assign to each cell of this grid, or voxel, a weighted
sum of the signed distances between its center and the closest point on the surface
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intersecting it (Figure 24.16(left)). This averaged signed distance is the desired den-
sity function, and its zero set can be found using classical techniques, such as the
marching cubes algorithm develop by Lorensen and Cline [1987] to extract isodensity
surfaces from volumetric medical data.

OO

A

B

Cb
ca

observations of the same scene

Merging different Filling

the gaps

Figure 24.16. A 2D illustration of the Curless-Levoy method for fusing multiple range
images. In the left part of the figure, three views observed by the same sensor located
at the point O are merged by computing the zero set of a weighted average of the signed
distances between voxel centers (e.g., points A, B and C) and surface points (e.g., a, b
and c) along viewing rays. In general, distances to different sensors would be used instead.
The light grey area in the right part of the figure is the set of voxels marked as empty in
the gap-filling part of the procedure.

Missing surface fragments corresponding to unobserved parts of the scene are
handled by initially marking all voxels as unseen, or equivalently assigning them
a depth equal to some large positive value (standing for +∞), then assigning as
before to all voxels close to the measured surface patches the corresponding signed
distance, and finally carving out (i.e., marking as empty, or having a large negative
depth standing for −∞) the voxels that lie between the observed surface patches
and the sensor (Figure 24.16(right)).
Figure 24.17 shows an example of model built from multpiple range images of a

Buddha statuette acquired with a Cyberware 3030 MS optical triangulation scanner,
as well as a physical model constructed from the geometric one via stereolithography
[Curless and Levoy, 1996].

24.4 Object Recognition

We now turn to actual object recognition from range images. The registration
techniques introduced in the previous section will play a crucial role in the two
algorithms discussed in this one.
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Figure 24.17. 3D Fax of a statuette of a Buddha. From left to right: photograph
of the statuette; range image; integrated 3D model; model after hole filling; physical
model obtained via stereolithography. Reprinted from [Curless and Levoy, 1996],
Figure 10.

24.4.1 Matching Piecewise-Planar Surfaces Using Interpretation
Trees

The recognition algorithm proposed by Faugeras and Hebert [1986] is a recursive
procedure exploiting rigidity constraints to efficiently search an interpretation tree
for the path(s) corresponding to the best sequence(s) of matches. The basic proce-
dure is given in pseudocode in Algorithm 24.3 below. To correctly handle occlusions
(and the fact that, as noted earlier, a range finder will “see”, at best, one half of
the object facing it), the algorithm must consider, at every stage of the search, the
possibility that a model plane may not match any scene plane. This is done by
always incorporating in the list of potential matches of a given plane a token “null”
plane.

Selecting Potential Matches

The selection of potential matches for a given model plane is based on various criteria
depending on the number of correspondences already established, with each new
correspondence providing new geometric constraints and more stringent criteria. At
the beginning of the search, we only know that a model plane with area A should
only be matched to scene planes with a compatible area, i.e., in the range [αA, βA].
Reasonable values for the two thresholds might be 0.5 and 1.1, which allows for some
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Function Match(model, scene, pairs, rot, trans);
begin
bestpairs ← nil; bestscore ← 0;
for Π in model do
for Π′ in Potential-Matches(scene, pairs, Π, rot, trans) do
rot ← Update-Registration-2(pairs, Π, Π′, rot, trans);
(score, newpairs) ← Match(model−Π, scene−Π′ , pairs+(Π,Π′), rot, trans);
if score>bestscore then bestscore ← score; bestpairs ← newpairs endif;
endfor;
endfor;

return bestpairs;
end.

Algorithm 24.3: The plane-matching algorithm of Faugeras and Hebert [1986].

The recursive function Match returns the best set of matching plane pairs found by
recursively visiting the interpretation tree. It is initially called with an empty list
of pairs and nil values for the rotation and translation arguments rot and trans.
The auxiliary function Potential-Matches returns the subset of the planes in the
scene that are compatible with the model plane Π and the current estimate of the
rigid transformation mapping the model planes onto their scene matches (see text
for details). The auxiliary function Update-Registration-2 uses the matched plane
pairs to update the current estimate of the rigid transformation.

discrepency between the unoccluded areas, and also affords a degree of occlusion
up to 50%.
After the first correspondence has been established, it is still too early to try and

estimate the rigid transformation mapping the model onto the scene, but it is clear
that the angle between the normals to any matching planes should be (roughly)
equal to the angle θ between the normals to the first pair of planes, say lie in the
interval [θ− ε, θ+ ε]. The normals to the corresponding planes lie in a band of the
Gauss sphere, and they can be efficiently retrieved by discretizing this sphere and
associating to each cell a bucket that stores the scene planes whose normal falls into
it (Figure 24.18).
A second pairing is sufficient to complete determine the rotation separating the

model from its instance in the scene: this is geometrically clear (and will be con-
firmed analytically in the next section) since a pair of matching vectors constrains
the rotation axis to lie in the plane bisecting these vectors. Two pairs of matching
planes determine the axis of rotation as the intersection of the corresponding bisect-
ing planes, and the rotation angle is readily computed from either of the matches.
Given the rotation and a third model plane, one can predict the orientation of the
normal to its possible matches in the scene, which can be efficiently recovered using
once again the discrete Gauss sphere mentioned before.
After three pairings have been found, the translation can also be estimated and
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θ

θ+ε

θ−ε

u

v

Figure 24.18. Finding all vectors v that make an angle in the [θ − ε, θ + ε] range with
a given vector u. It should be noted that the unit sphere does not admit tesselations with
an arbitrary level of detail by regular (spherical) polygons. The tesselation shown in the
diagram is made of hexagons with unequal edge lengths. See, for example, [Horn, 1986,
Chap. 16] for a discussion of this problem and various tesselation schemes.

used to predict the distance between the origin and any scene plane matching a
fourth scene plane. The same is true for any further pairing.

Estimating the Rigid Transformation

Let us consider a plane Π defined by the equation n · x − d = 0 in some fixed
coordinate system. Here n denotes the unit normal to the plane and d its (signed)
distance from the origin. Under the rigid transformation defined by the rotation
matrix R and the translation vector t, a point x maps onto the point x′ = Rx+ t,
and Π maps onto the plane Π′ whose equation is n′ · x′ − d′ = 0, with{

n′ = Rn,
d′ = n′ · t + d.

Thus, estimating the rigid transformation that maps n planes Πi onto the match-
ing planes Π′i (i = 1, . . . , n) amounts to finding the rotation matrixR that minimizes
the error

Er =

n∑
i=1

|n′i −Rni|
2

and the translation vector t that minimizes

Et =

n∑
i=1

(d′i − di −n
′
i · t)

2.

The rotation R minimizing Er can be computed, exactly as in Section 24.4.1, by
using the quaternion representation of matrices and solving an eigenvector problem.
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The translation vector t minimizing Et is the solution of a (non-homogeneous)
linear least-squares problem, whose solution can be found using the techniques
presented in Chapter 6.

Results

Figure 24.19 shows recognition results obtained using a bin of Renault parts such
as the one shown in Figure 24.12. The range image of the bin has been segmented
into planar patches using the technique presented in Section 24.2.2. The matching
algorithm is run three times on the scene, with patches matched during each run
removed from the scene before the next iteration. As shown by the figure, the three
instances of the part present in the bin are correctly identified, and the accuracy of
the pose estimation process is attested by the reprojection into the range image of
the model in the computed pose.

(a) (b)

(c) (d)

Figure 24.19. Recognition results: (a) a bin of parts, and (b)-(d) the three instances of
the Renault part found in that bin. In each case, the model is shown both by itself in the
position and orientation estimated by the algorithm, as well as superimposed (dotted lines)
in this pose over the corresponding planes of the range image. Reprinted from [Faugeras
and Hebert, 1986], Figures 14–16.

24.4.2 Matching Free-Form Surfaces Using Spin Images

As demonstrated in Section 24.2.1, differential geometry provides a powerful lan-
guage for describing the shape of a surface locally, i.e., in a small neighborhood of
each one of its points. On the other hand, the region-growing algorithm discussed
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in Section 24.2.2 is aimed at constructing a globally consistent surface description in
terms of planar patches. We introduce in this section a semi-local surface represen-
tation, the spin image of Johnson and Hebert [1998; 1999], that captures the shape
of a surface in a relatively large neighborhood of each one of its points. As will be
shown in the rest of this section, the spin image is invariant under rigid transfor-
mations, and it affords an efficient algorithm for pointwise surface matching, thus
completely bypassing segmentation in the recognition process.

Spin Image Definition

Let us assume as in Section 24.2.2 that the surface of interest is given in the form
of a triangular mesh. The (outward-pointing) surface normal at each vertex can be
estimated by fitting a plane to this vertex and its neighbors, turning the triangula-
tion into a net of oriented points. Given an oriented point P , the spin coordinates of
any other point Q can now be defined as the (nonnegative) distance α separating Q
from the (oriented) normal line in P and the (signed) distance β from the tangent
plane to Q (Figure 24.20).

β
α

Σ

Spin map

P

n

Q

Figure 24.20. Definition of the spin map associated with a surface point P : the spin
coordinates (α,β) of the point Q are respectively defined by the lengths of the projections
of
−−→
PQ onto the tangent plane and its surface normal. Note that there are three other

points with the same (α, β) coordinates as Q in this example.

Accordingly, the spin map sP : Σ → IR2 associated with P is defined for any
point Q on Σ as

sP (Q)
def
= (|
−−→
PQ×n|︸ ︷︷ ︸

α

,
−−→
PQ · n︸ ︷︷ ︸

β

).

As shown by Figure 24.20, this mapping is not injective. This is not surprising
since the spin map only provides a partial specification of a cylindrical coordinate
system: the third coordinate that would normally record the angle between some
reference vector in the tangent plane and the projection of

−−→
PQ into this plane is

missing. The principal directions are obvious choices for such a reference vector,
but focussing on the spin coordinates avoids their computation, a process that is
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susceptible to noise since it involves second derivatives and may be ambiguous for
(almost) planar or spherical patches.
The spin image associated with an oriented point is a histogram of the α, β

coordinates in a neighborhood of this point (Figure 24.20(b)). Concretely, the
α, β plane is divided into a rectangular array of δα × δβ bins that accumulate the
total surface area spanned by points with α, β values in that range.3 As shown
in [Carmichael et al., 1999] and the exercises, each triangle in the surface mesh
maps onto a region of the α, β plane whose boundaries are hyperbola arcs. Its
contribution to the spin image can thus be computed by scan-converting this region
and assigning to each bin that it traverses the area of the patch where the triangle
intersects the annular region of IR3 associated with the bin (Figure 24.21).

δβ

δα

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

A
���
���
���
���

���
���
���
���

α

β

A

Figure 24.21. Spin image construction: the triangle shown in the left of the diagram
maps onto a region with hyperbolic boundaries in the spin image; the value of each bin
intersected by this region is incremented by the area of the portion of the triangle that
intersects the annulus associated with the bin. After [Carmichael et al., 1999, Figure 3].

A key parameter of spin images is the support distance d that limits to a sphere
of radius d centered in P the range of the support points used to construct the
image. This sphere must be large enough to provide good descriptive power but
small enough to support recognition in the presence of clutter and occlusion. In
practice, an appropriate choice for d might be a tenth of the object’s diameter
[Johnson and Hebert, 1998]: thus, as noted earlier, the spin image is indeed a semi-
local description of the shape of a surface in an extended neighborhood of one of its
points.
Robustness to clutter can be improved by limiting the range of surface normals

at the support points to a cone of half-angle θ centered in n. As in the support
distance case, choosing the right value for θ involves a tradeoff between descriptive
power and insensitivity to clutter; a value of 60◦ has empirically been shown to
be satisfactory in [Johnson and Hebert, 1999]. The last parameter defining a spin

3The corresponding point sets may actually be divided into several connected components: for
example, for small enough values of δα and δβ there are four connected components in the example
shown in Figure 24.20, corresponding to small patches centered at the points having the same α,β
coordinates as Q.
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image is its size (in pixels), or equivalently, given the support distance, its bin size
(in meters). As shown in [Johnson and Hebert, 1998], an appropriate choice for the
bin size is the average distance between mesh vertices in the model. Figure 24.22
shows the spin images associated with three oriented points on the surface of a
rubber duck.

Figure 24.22. Three oriented points on the surface of a rubber duck and the corre-
sponding spin images. The α, β coordinates of the mesh vertices are shown besides the
actual spin images. Reprinted from [Johnson and Hebert, 1998], Figure 3.

Matching Spin Images

One of the most important features of spin images is that they are (obviously)
invariant under rigid transformations. Thus an image comparison technique such
as correlation can in principle be used to match the spin images associated with
oriented points in the scene and the object model. Things are not that simple,
however: we already noted that the spin map is not injective; in general, it is not
surjective either, and empty bins (or equivalently zero-valued pixels) may occur for
values of α and β that do not correspond to physical surface points (see the blank
areas in Figure 24.22 for example). Occlusion may cause the appearance of zero
pixels in the scene image, while clutter may introduce irrelevant non-empty bins.
It is therefore reasonable to restrict the comparison of two spin images to their
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common non-zero pixels. In this context, Johnson and Hebert [1998] have shown
that

S(I ,J)
def
= [Arctanh(C(I,J))]2 −

3

N − 3

is an appropriate similarity measure for two spin images whose overlap regions
containN pixels and are represented by the vectors I and J of IRN . In this formula,
C(I,J) denotes the normalized correlation of the vectors I and J , and Arctanh
denotes the hyperbolic arc tangent function. Armed with this similarity measure, we
can now outline a recognition algorithm that uses spin images to establish pointwise
correspondences.

Off-line:

Compute the spin images associated with the oriented points of a surface
model and store them into a table.

On-line:

1. Form correspondences between a set of spin images randomly selected in the
scene and their best matches in the model table using the similarity measure
S to rank-order the matches.

2. Filter and group correspondences using geometric consistency constraints,
and compute the rigid transformations best aligning the matched scene and
model features.

3. Verify the matches using the ICP algorithm.

Algorithm 24.4: The algorithm of Johnson and Hebert [1998; 1999] for pointwise

matching of free-form surfaces using spin images.

The various stages of this algorithm are mostly straightforward. Let us note
however that the filtering/grouping step relies on comparing the spin coordinates
of model points relative to the other mesh vertices in their group with the spin
coordinates of the corresponding scene points relative to their own group. Once
consistent groups have been identified, an initial estimate of the rigid transformation
aligning the scene and the model is computed from (oriented) point matches using
the quaternion-based registration technique described in Section 24.3.1. Finally,
consistent sets of correspondences are verified by iteratively spreading the matching
process to their neighbors, updating along the way the rigid transformation that
aligns the scene and the model.
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Results

The matching algorithm presented in the previous section has been extensively
tested in recognition tasks with cluttered indoor scenes that contain both industrial
parts and various toys [Johnson and Hebert, 1998; Johnson and Hebert, 1999]. It has
also been used in outdoor navigation/mapping tasks with very large datasets cov-
ering thousands of squared meters of terrain [Carmichael et al., 1999]. Figure 24.23
shows sample recognition results in the toy domain.

(a)

(b)

Figure 24.23. Spin-image recognition results: (a) a cluttered image of toys and the
mesh constructed from the corresponding range image; (b) recognized objects overlaid on
the original pictures.

24.5 Notes

Excellent surveys of active range finding techniques can be found in [Jarvis, 1983;
Nitzan, 1988; Besl, 1989; Hebert, 2000]. The model-based approach to edge detec-
tion presented in Section 24.2.1 is only one of the many techniques that have been
proposed for segmenting range pictures using notions from differential geometry
(see, for example, [Fan et al., 1987; Besl and Jain, 1988]). An alternative to the
computational molecules used to smooth a range image in that section is provided
by anisotropic diffusion, where the amount of smoothing at each point depends on
the value of the gradient [Perona and Malik, 1990].
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The method for segmenting surfaces into (almost) planar patches presented in
Section 24.2.2 is easily extended to quadric patches (see [Faugeras and Hebert,
1986] and the exercises). Extensions to higher-order surface primitives is more
problematic, in part because surface fitting is more difficult in that case. There is a
vast amount of literature on the latter problem, using superquadrics (e.g., [Pentland,
1986; Bajcsy and Solina, 1987; Gross and Boult, 1988]) and algebraic surfaces (e.g,
[Taubin et al., 1994; Keren et al., 1994; Sullivan et al., 1994]) for example.
Alternatives to the Curless and Levoy [1996] approach to the fusion of multiple

range images include the Delaunay triangulation algorithm of Boissonnat [1984],
the zippered polygonal meshes of Turk and Levoy [1994] and the crust technique
of Amenta et al. [1998]. The quaternion-based approach to the estimation of rigid
transformations described in this chapter was developed independently by Faugeras
and Hebert [1986] and Horn [1987]. The recognition technique discussed in Section
24.4.1 is closely related to other algorithms using interpretation trees to control
the combinatorial cost of feature matching in the two- and three-dimensional cases
[Gaston and Lozano-Pérez, 1984; Ayache and Faugeras, 1986; Grimson and Lozano-
Pérez, 1987; Huttenlocher and Ullman, 1987].
The spin images discussed in Section 24.4.2 have been used to establish pointwise

correspondences between range images and surface models. Related approaches to
this problem include the structural indexing method of Stein and Medioni [1992]

and the point signatures proposed by Chua and Jarvis [1996]. A (local) variant of
the same idea will be discussed in Chapter 21 in the context of object recognition
from photographs [Schmid and Mohr, 1997a]. To conclude, let us note that the
original algorithm described in Section 24.4.2 has been extended in various direc-
tions: a scene can now be matched simultaneously to several models using principal
component analysis (see Chapter 21 and [Johnson and Hebert, 1999]), while learn-
ing techniques are used to prune false matches in cluttered scenes [Carmichael et
al., 1999].

24.6 Assignments

Exercises

1. Step model: compute zσ(x) = Gσ∗z(x), where z(x) is given by (24.2.2). Show
that z′′σ is given by (24.2.3). Conclude that κ

′′
σ/κ

′
σ = −2δ/h in the point xσ

where z′′σ and κσ vanish.

2. Roof model: show that κσ is given by (24.2.4).

3. Use (24.2.1) to show that a necessary and sufficient condition for the coor-
dinate curves of a parameterized surface to be principal directions is that
f = F = 0.

4. Show that the lines of curvature of a surface of revolution are its meridians
and parallels.
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5. Calculate the Gaussian curvature of an SHGC.

6. Show that the matrix Ai constructed in Section 24.3.1 is equal to

Ai =

(
0 yTi − y

′T
i

y′i − yi [yi + y
′
i]×

)
.

7. As mentioned earlier, the ICP method can be extended to various types of ge-
ometric models. We consider here the case of polyhedral models and piecewise
parametric patches.

(a) Give a method for computing the point Q in a polygon that is closest to
some point P .

(b) Give a method for computing the point Q in the parametric patch x :
I×J → IR3 that is closest to some point P . Hint: use Newton iterations.

8. Develop a linear least-squares method for fitting a quadric surface to a set of
points under the constraint that the quadratic form has unit Frobenius form.

9. Show that a surface triangle maps onto a patch with hyperbolic edges in α, β
space.

Programming Assignments

The datasets for the followingmachine problems can be found on the CD companion
of this book.

1. Implement molecule-based smoothing and the computation of principal direc-
tions and curvatures.

2. Implement the region-growing approach to plane segmentation described in
this chapter.

3. Implement an algorithm for computing the lines of curvature of a surface
from its range image. Hint: use a curve-growing algorithm analogous to the
region-growing algorithm for plane segmentation.

4. Implement the Besl-McKay ICP registration algorithm.

5. Marching squares in the plane: develop and implement an algorithm for find-
ing the zero set of a planar density function. Hint: work out the possible ways
a curve may intersect the edges of a pixel, and use linear interpolation along
these edges to identify the zero set.

6. Implement the registration part of the Faugeras-Hebert algorithm.


