
Benjamin San Souci & Maude Lemaire

What is Node.js anyway?

introduction

• a complete software platform for scalable server-side
and networking applications

• open-source under the MIT license
• comes bundled with a JavaScript interpreter
• runs on Linux, Windows, Mac OS & most other

major operating systems

timeline

2009
• Created by Ryan Dahl
• Version 1 in 2009 to revolutionize web applications
• Inspired by Ruby Mongrel web server

2010 • Joyent sponsors Node.js development

2011
• First released version of Node.js available to the public
• Initial version only available for Linux.
• Microsoft partners with Joyent to provide Windows

support

2012 • Complete rewrite of central libraries

...

2014
• Latest release v0.10.26
• Still several improvements away from a stable v0.12

and a finalized v1.0

huge success

why?

• Up until recently, the web was a stateless environment.

• Interactive features were encapsulated within Flash or
Java Applets

• Node establishes real-time, two-way connections!

how it works

• Built on Chrome's V8 JavaScript runtime for easily
building fast, scalable network applications

• Uses an event-driven, non-blocking I/O model that
makes it lightweight and efficient, perfect for data-
intensive real-time applications that run across
distributed devices

overall structure

• Two major components:

• Main core, written in C and C++
• Modules, such as Libuv library and V8 runtime engine, also written

in C++

overall structure

• All requests handled by the Main
Single Thread

• API in JavaScript

• Node bindings allow for server
operations

• Relies on Google’s V8 runtime
engine

• Libuv responsible for both
asynchronous I/O & event loop

V8
Asynchronous

I/O
(libuv)

Event
Loop
(libuv)

DNS
(c-ares)

Crypto
(OpenSSL)

Node Bindings
(socket, http, etc)

API

Main Single Thread

v8 runtime engine

• Just in Time compiler, written in C++

• Consists of compiler, optimizer, and garbage
collector

libuv

• Responsible for Node’s asynchronous I/O operations

• Contains fixed-size thread pool

major influences

• Heavily influenced by architecture of Unix operating
system

• Relies on a small core and layers of libraries and other
modules to facilitate I/O operations

major influences

• Built-in package manager contributes
to the modularity of Node

major features

• Most other similar web platforms are multi-threaded
• With each new request, heap allocation generated
• Each request handled sequentially

1. Single threaded

major features

• Typically implemented using library sand a block call, but Node is
non-blocking throughout!

• Implemented using language construct
• Automatically terminated
• Tightly coupled to V8 engine

2. Event Loop

major features

• All requests temporarily saved on heap
• Requests handled sequentially
• Can support nearly 1 million concurrent connections

3. Non-blocking I/O

how it works

1. HTTP
Request

Single thread

Node.js

Mobile Client
Web Server

3. Data

2. Async
Data Query

4. Response in
JSON format
via callback

Database

A simple example: accessing data from a database

* Here Node.js, acknowledges the request right away before writing any data to the database.

how it works

A generic model of Node.js

Event
LoopInitialize Run V8

IdleCreate Thread I/O OperationPerform Task

Exit

Exit

Delegate Task

Stop

Main Event Loop

Thread n

NodeJS

Stop

how it works

A closer look at the Event Loop
Thread 1

Node.js
Application

Event Loop
(Libuv)

Thread 2 Thread n

…

Task 1

Task 2

Task 3

Return 1

Task 4

Callback 1

(function,
callback)

major architectural styles

• Distributed
• Hierarchical
• Data Flow
• Implicit Asynchronous

critical analysis

Benefits:
• Because of its single-threaded, non-blocking scheme, Node can

support nearly 1 million concurrent connections
• Asynchronous, event-based scheme allows for scalability, lower

memory usage & CPU overhead
• Can be used to implement an entire JavaScript-based web application
• Requests are acknowledged quickly due to asynchronous nature
• Native JSON handling
• Easy RESTful services
• Speedy native bindings in C
• Due to its real-time nature, it’s possible to process files while they are

being uploaded

critical analysis

Best suited for:
• REST + JSON APIs
• Backend for single-page web apps with same language for client

and server
• Quick prototyping
• Rapidly evolving applications: media sites, marketing, etc.
• Chat applications
• Ideal for computing and orchestration tasks divided using worker

processes

critical analysis

Limitations:
• Node & V8 runtime engine are tightly coupled
• Because it is single-threaded, it has a single point of failure for all

requests (low fault-tolerance)
• Developers beware of exception handling
• Currently lacking standards regarding code quality
• Without a complete v1.0, backwards-compatibility is bogging down

code base

critical analysis

Not suited for:
• CPU-bound tasks
• Applications needing to process large amounts of data in parallel,

unless using worker processes

the future of node

• Larger clients are seeking to integrate Node.js into their
mobile platforms.

• Increasing enterprise influence vs. popularity among
autonomous developers

• v1.0 release expected by the end of 2014

