
Binary and Binomial Heaps

These lecture slides are adapted

from CLRS, Chapters 6, 19.

1

grewe
Cross-Out

5

Binary Heap: Definition

Binary heap.

 Almost complete binary tree.

– filled on all levels, except last, where filled from left to right

 Min-heap ordered.

– every child greater than (or equal to) parent

06

14

78 18

81 77 91

45

53 47

64 84 99 83

6

Binary Heap: Properties

Properties.

 Min element is in root.

 Heap with N elements has height = log2 N.

06

14

78 18

81 77 91

45

53 47

64 84 99 83

N = 14

Height = 3

7

Binary Heaps: Array Implementation

Implementing binary heaps.

 Use an array: no need for explicit parent or child pointers.

– Parent(i) = i/2

– Left(i) = 2i

– Right(i) = 2i + 1

06

14

78 18

81 77 91

45

53 47

64 84 99 83

1

2 3

4 5 6 7

8 9 10 11 12 13 14

8

Binary Heap: Insertion

Insert element x into heap.

 Insert into next available slot.

 Bubble up until it's heap ordered.

– Peter principle: nodes rise to level of incompetence

06

14

78 18

81 77 91

45

53 47

64 84 99 83 42 next free slot

9

Binary Heap: Insertion

Insert element x into heap.

 Insert into next available slot.

 Bubble up until it's heap ordered.

– Peter principle: nodes rise to level of incompetence

 06

14

78 18

81 77 91

45

53 47

64 84 99 83 42 42

swap with parent

10

Binary Heap: Insertion

Insert element x into heap.

 Insert into next available slot.

 Bubble up until it's heap ordered.

– Peter principle: nodes rise to level of incompetence

06

14

78 18

81 77 91

45

42 47

64 84 99 83 42 53

swap with parent

11

Binary Heap: Insertion

Insert element x into heap.

 Insert into next available slot.

 Bubble up until it's heap ordered.

– Peter principle: nodes rise to level of incompetence

 O(log N) operations.

06

14

78 18

81 77 91

42

45 47

64 84 99 83 53

stop: heap ordered

12

Binary Heap: Decrease Key

Decrease key of element x to k.

 Bubble up until it's heap ordered.

 O(log N) operations.

06

14

78 18

81 77 91

42

45 47

64 84 99 83 53

13

Binary Heap: Delete Min

Delete minimum element from heap.

 Exchange root with rightmost leaf.

 Bubble root down until it's heap ordered.

– power struggle principle: better subordinate is promoted

06

14

78 18

81 77 91

42

45 47

64 84 99 83 53

14

Binary Heap: Delete Min

Delete minimum element from heap.

 Exchange root with rightmost leaf.

 Bubble root down until it's heap ordered.

– power struggle principle: better subordinate is promoted

53

14

78 18

81 77 91

42

45 47

64 84 99 83 06

15

Binary Heap: Delete Min

Delete minimum element from heap.

 Exchange root with rightmost leaf.

 Bubble root down until it's heap ordered.

– power struggle principle: better subordinate is promoted

53

14

78 18

81 77 91

42

45 47

64 84 99 83

exchange with left child

16

Binary Heap: Delete Min

Delete minimum element from heap.

 Exchange root with rightmost leaf.

 Bubble root down until it's heap ordered.

– power struggle principle: better subordinate is promoted

14

53

78 18

81 77 91

42

45 47

64 84 99 83

exchange with right child

17

Binary Heap: Delete Min

Delete minimum element from heap.

 Exchange root with rightmost leaf.

 Bubble root down until it's heap ordered.

– power struggle principle: better subordinate is promoted

 O(log N) operations.

14

18

78 53

81 77 91

42

45 47

64 84 99 83

stop: heap ordered

18

Binary Heap: Heapsort

Heapsort.

 Insert N items into binary heap.

 Perform N delete-min operations.

 O(N log N) sort.

 No extra storage.

19

H1 H2

14

78 18

81 77 91

11

62 53

64 84 99 41

Binary Heap: Union

Union.

 Combine two binary heaps H1 and H2 into a single heap.

 No easy solution.

– (N) operations apparently required

 Can support fast union with fancier heaps.

20

Priority Queues

make-heap

Operation

insert

find-min

delete-min

union

decrease-key

delete

1

Binary

log N

1

log N

N

log N

log N

1

Binomial

log N

log N

log N

log N

log N

log N

1

Fibonacci *

1

1

log N

1

1

log N

1

Relaxed

1

1

log N

1

1

log N

1

Linked List

1

N

N

1

1

N

is-empty 1 1 1 1 1

Heaps

21

Binomial Tree

Binomial tree.

 Recursive definition:

Bk-1

Bk-1

B0 Bk

B0 B1 B2 B3 B4

22

Binomial Tree

Useful properties of order k binomial tree Bk.

 Number of nodes = 2k.

 Height = k.

 Degree of root = k.

 Deleting root yields binomial

trees Bk-1, … , B0.

Proof.

 By induction on k.

B0 B1 B2 B3 B4

B1

Bk

Bk+1

B2

B0

23

Binomial Tree

A property useful for naming the data structure.

 Bk has nodes at depth i.

B4










i

k

6
2

4










depth 2

depth 3

depth 4

depth 0

depth 1

24

Binomial Heap

Binomial heap. Vuillemin, 1978.

 Sequence of binomial trees that satisfy binomial heap property.

– each tree is min-heap ordered

– 0 or 1 binomial tree of order k

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

25

Binomial Heap: Implementation

Implementation.

 Represent trees using left-child, right sibling pointers.

– three links per node (parent, left, right)

 Roots of trees connected with singly linked list.

– degrees of trees strictly decreasing from left to right

50

48 31 17

44 10

6

37

3 18

29

6

37

3 18

48

31 50

10

44 17

heap

29

Leftist Power-of-2 Heap Binomial Heap

26

Binomial Heap: Properties

Properties of N-node binomial heap.

 Min key contained in root of B0, B1, . . . , Bk.

 Contains binomial tree Bi iff bi = 1 where bn b2b1b0 is binary

representation of N.

 At most log2 N + 1 binomial trees.

 Height  log2 N.

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19

trees = 3

height = 4

binary = 10011

27

Binomial Heap: Union

Create heap H that is union of heaps H' and H''.

 "Mergeable heaps."

 Easy if H' and H'' are each order k binomial trees.

– connect roots of H' and H''

– choose smaller key to be root of H

H''

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

H'

28

Binomial Heap: Union

0 0 1 1

1 0 0 1 +

0 1 1 1

1 1

1

1

0

1

19 + 7 = 26

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

41

33 28

15

25

7 12

+

29

Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

41

33 28

15

25

7 12

+

30

Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

12

18

18

12

31

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

12

18

25

37 7

3

18

12

18

12

32

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

12

+

18

25

37 7

3

41

28 33 25

37 15 7

3

18

12

18

12

33

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

18

12

41

28 33 25

37 15 7

3

12

18

25

37 7

3

41

28 33 25

37 15 7

3

18

12

34

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

18

12

41

28 33 25

37 15 7

3

12

18

25

37 7

3

41

28 33 25

37 15 7

3

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

18

12

35

Binomial Heap: Union

Create heap H that is union of heaps H' and H''.

 Analogous to binary addition.

Running time. O(log N)

 Proportional to number of trees in root lists  2(log2 N + 1).

0 0 1 1

1 0 0 1 +

0 1 1 1

1 1

1

1

0

1

19 + 7 = 26

36

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

 Find root x with min key in root list of H, and delete

 H'  broken binomial trees

 H  Union(H', H)

Running time. O(log N)

37

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

 Find root x with min key in root list of H, and delete

 H'  broken binomial trees

 H  Union(H', H)

Running time. O(log N)

55

45 32

30

24

23 22

50

48 31 17

37

6 18

44 8 29 10

H

H'

38

3

37

6 18

55

x 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Decrease Key

Decrease key of node x in binomial heap H.

 Suppose x is in binomial tree Bk.

 Bubble node x up the tree if x is too small.

Running time. O(log N)

 Proportional to depth of node x  log2 N .

depth = 3

39

Binomial Heap: Delete

Delete node x in binomial heap H.

 Decrease key of x to -.

 Delete min.

Running time. O(log N)

40

Binomial Heap: Insert

Insert a new node x into binomial heap H.

 H'  MakeHeap(x)

 H  Union(H', H)

Running time. O(log N)

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

x

H'

41

Binomial Heap: Sequence of Inserts

Insert a new node x into binomial heap H.

 If N = 0, then only 1 steps.

 If N = 01, then only 2 steps.

 If N = 011, then only 3 steps.

 If N = 0111, then only 4 steps.

Inserting 1 item can take (log N) time.

 If N = 11...111, then log2 N steps.

But, inserting sequence of N items takes O(N) time!

 (N/2)(1) + (N/4)(2) + (N/8)(3) + . . .  2N

 Amortized analysis.

 Basis for getting most operations

down to constant time.

50

48 31 17

44 29 10

3

37

6 x

2
2

1

2
2

2
1

1







NN

N

n
n

Nn

42

Priority Queues

make-heap

Operation

insert

find-min

delete-min

union

decrease-key

delete

1

Binary

log N

1

log N

N

log N

log N

1

Binomial

log N

log N

log N

log N

log N

log N

1

Fibonacci *

1

1

log N

1

1

log N

1

Relaxed

1

1

log N

1

1

log N

1

Linked List

1

N

N

1

1

N

is-empty 1 1 1 1 1

Heaps

just did this

