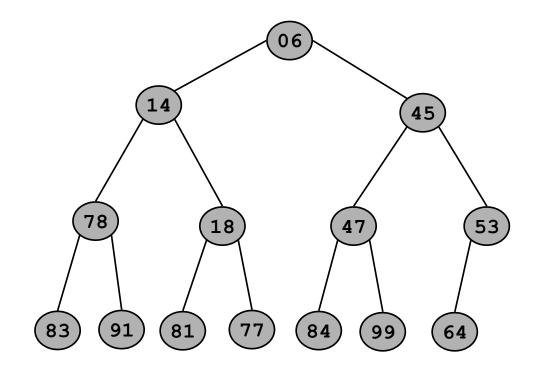
Binary and Binomial Heaps

These lecture slides are adapted from CLRS, Chapters 6, 19.

Binary Heap: Definition

Binary heap.

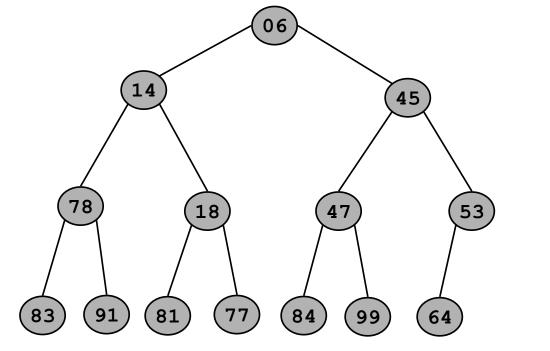
- . Almost complete binary tree.
 - filled on all levels, except last, where filled from left to right
- . Min-heap ordered.
 - every child greater than (or equal to) parent



Binary Heap: Properties

Properties.

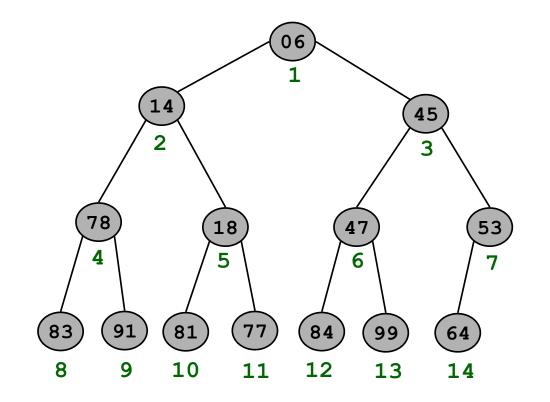
- . Min element is in root.
- Heap with N elements has height = $\lfloor \log_2 N \rfloor$.



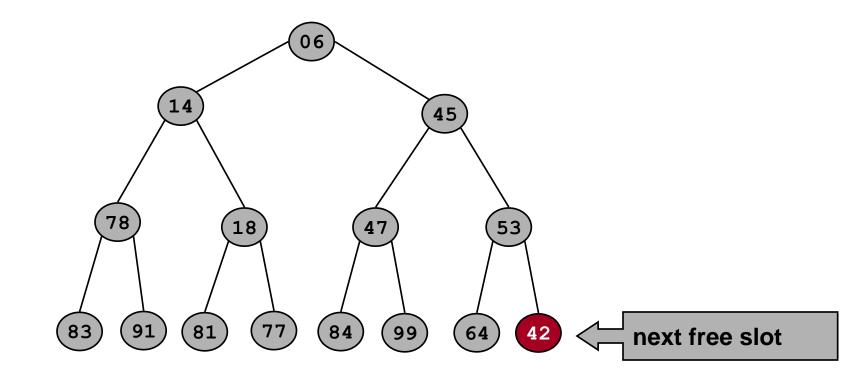
Binary Heaps: Array Implementation

Implementing binary heaps.

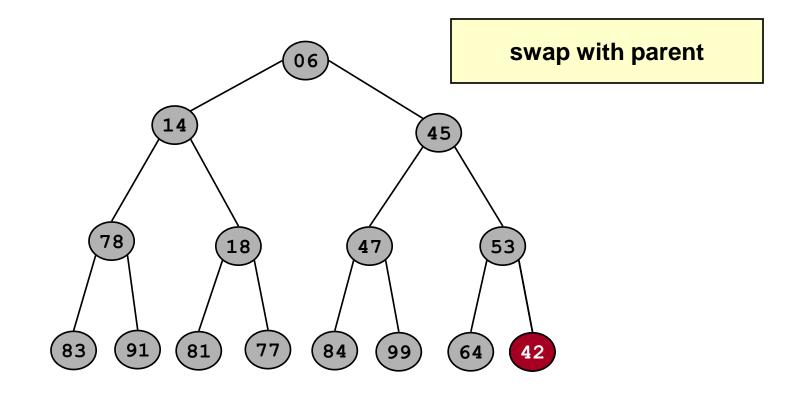
- . Use an array: no need for explicit parent or child pointers.
 - Parent(i) = $\lfloor i/2 \rfloor$
 - -Left(i) = 2i
 - Right(i) = 2i + 1



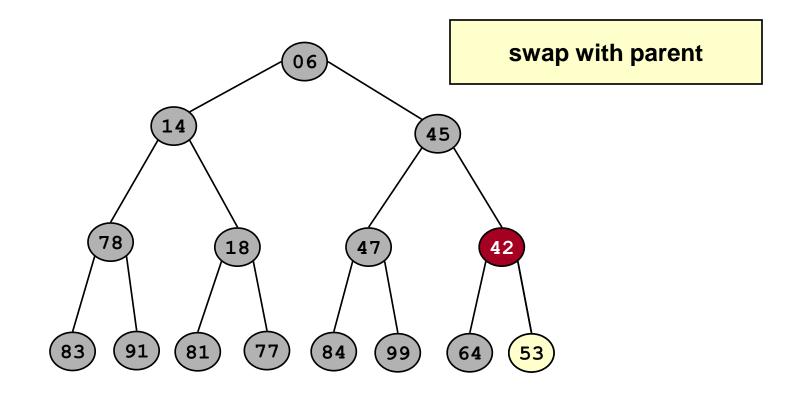
- . Insert into next available slot.
- . Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence



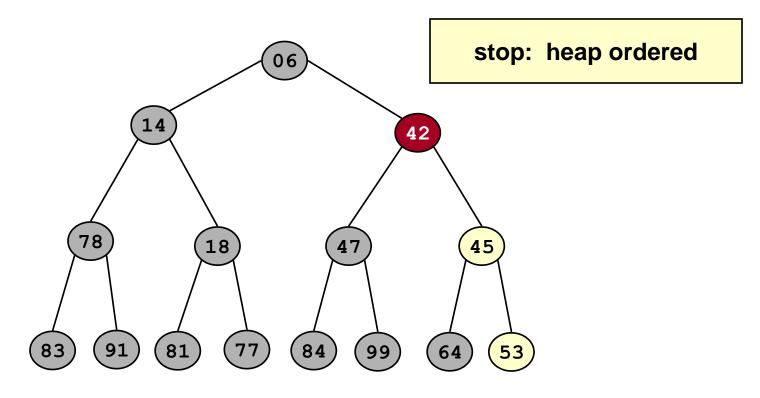
- . Insert into next available slot.
- . Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence



- . Insert into next available slot.
- Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence



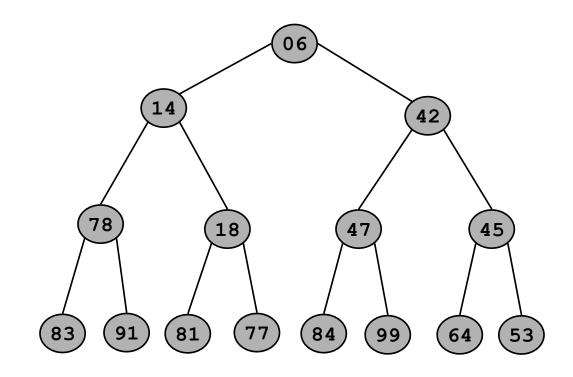
- . Insert into next available slot.
- . Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence
- O(log N) operations.



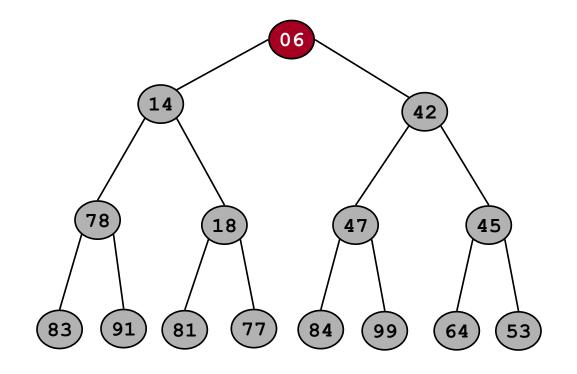
Binary Heap: Decrease Key

Decrease key of element x to k.

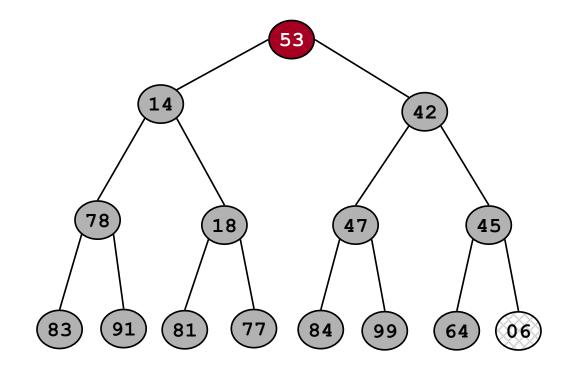
- . Bubble up until it's heap ordered.
- O(log N) operations.



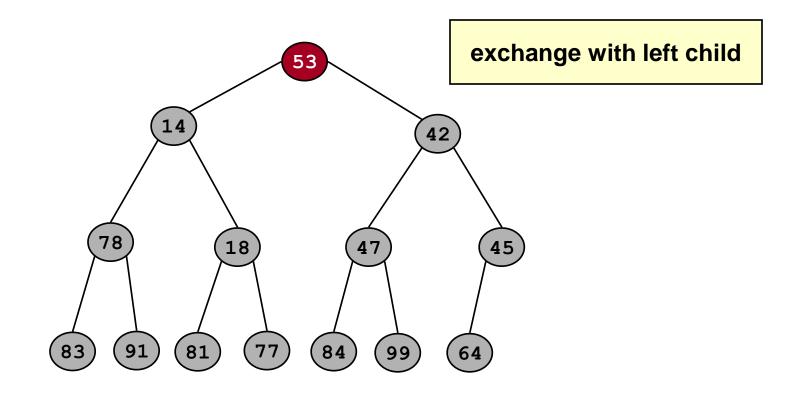
- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted



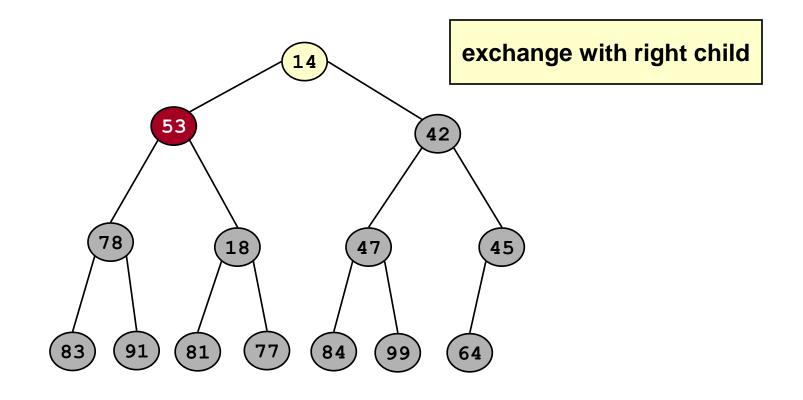
- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted



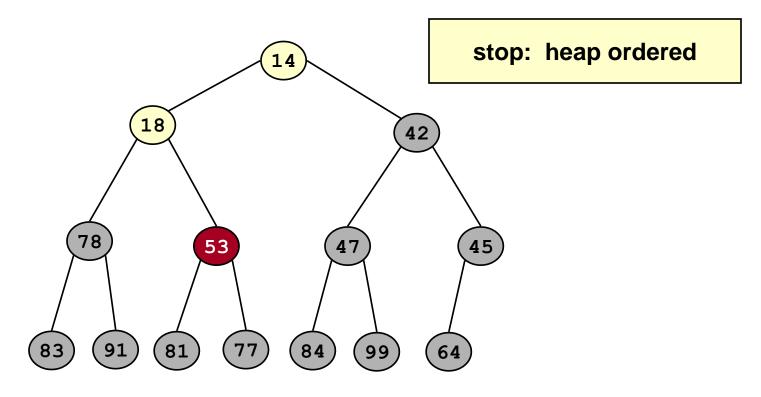
- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted



- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted



- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted
- O(log N) operations.



Binary Heap: Heapsort

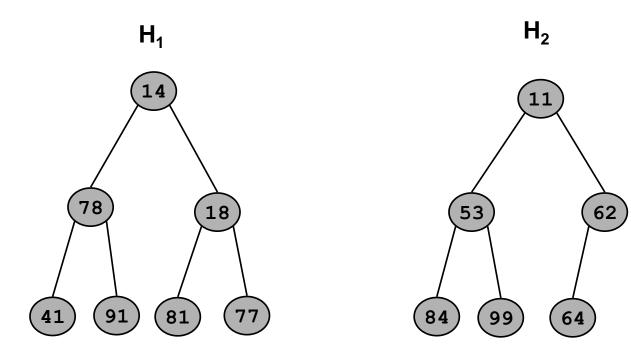
Heapsort.

- . Insert N items into binary heap.
- . Perform N delete-min operations.
- O(N log N) sort.
- . No extra storage.

Binary Heap: Union

Union.

- . Combine two binary heaps H_1 and H_2 into a single heap.
- . No easy solution.
 - $\Omega(N)$ operations apparently required
- . Can support fast union with fancier heaps.



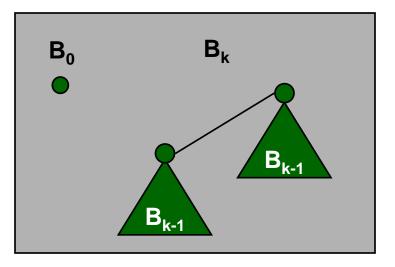
Priority Queues

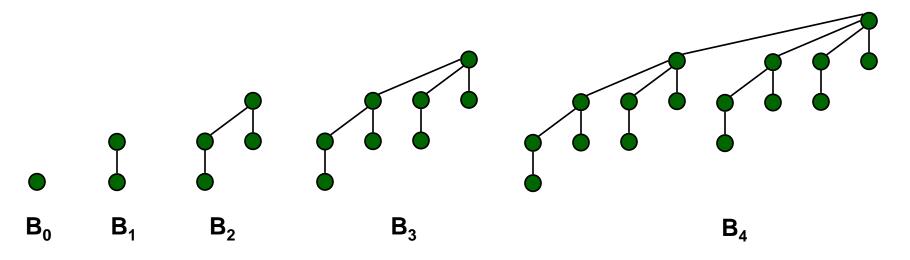
		Heaps				
Operation	Linked List	Binary	Binomial	Fibonacci *	Relaxed	
make-heap	1	1	1	1	1	
insert	1	log N	log N	1	1	
find-min	N	1	log N	1	1	
delete-min	N	log N	log N	log N	log N	
union	1	Ν	log N	1	1	
decrease-key	1	log N	log N	1	1	
delete	N	log N	log N	log N	log N	
is-empty	1	1	1	1	1	

Binomial Tree

Binomial tree.

• Recursive definition:





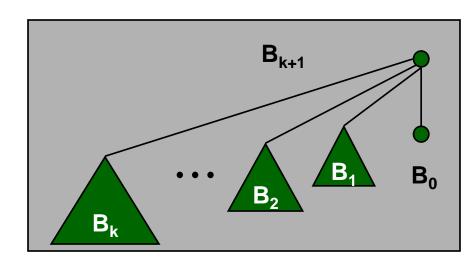
Binomial Tree

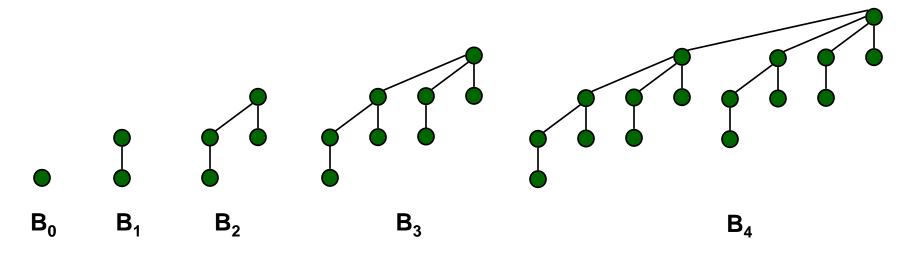
Useful properties of order k binomial tree B_k.

- Number of nodes = 2^k .
- Height = k.
- Degree of root = k.
- Deleting root yields binomial trees B_{k-1}, ..., B₀.

Proof.

By induction on k.

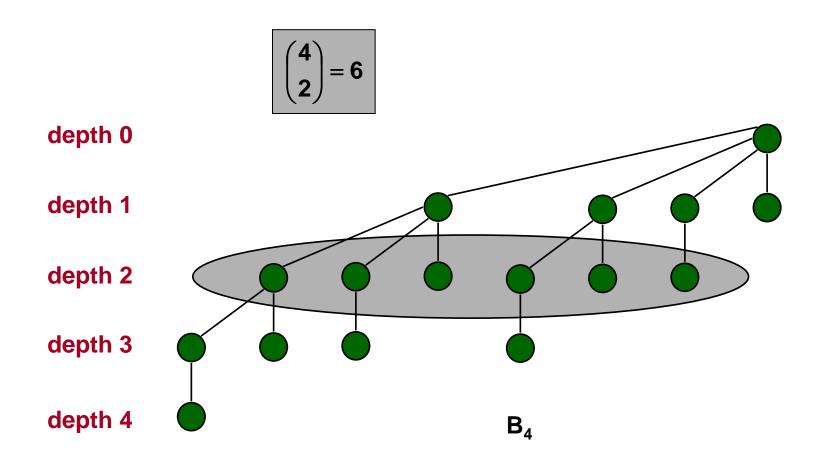




Binomial Tree

A property useful for naming the data structure.

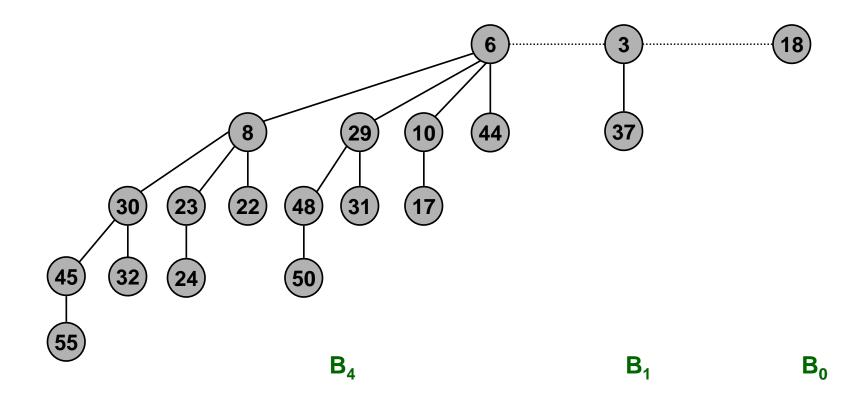
• B_k has $\binom{k}{i}$ nodes at depth i.



Binomial Heap

Binomial heap. Vuillemin, 1978.

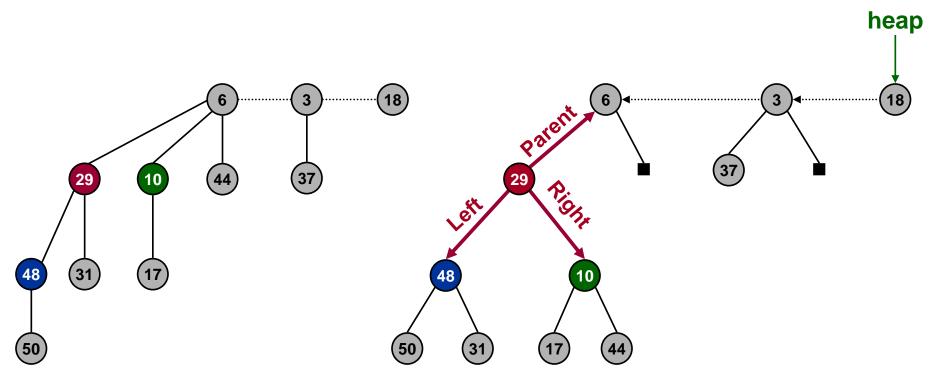
- . Sequence of binomial trees that satisfy binomial heap property.
 - each tree is min-heap ordered
 - 0 or 1 binomial tree of order k



Binomial Heap: Implementation

Implementation.

- . Represent trees using left-child, right sibling pointers.
 - three links per node (parent, left, right)
- . Roots of trees connected with singly linked list.
 - degrees of trees strictly decreasing from left to right



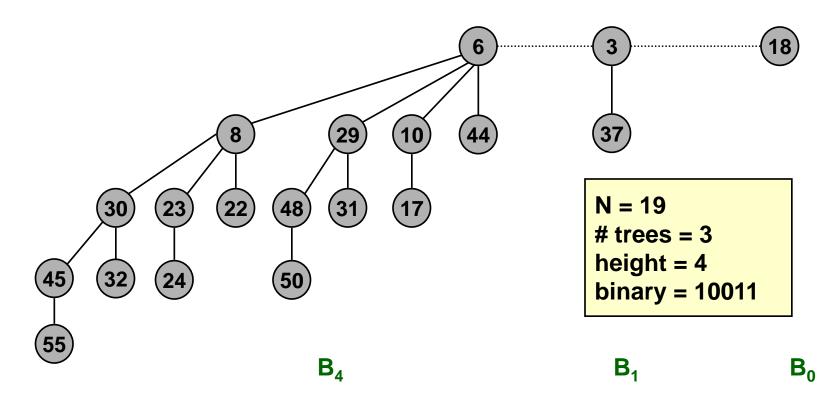
Binomial Heap

Leftist Power-of-2 Heap

Binomial Heap: Properties

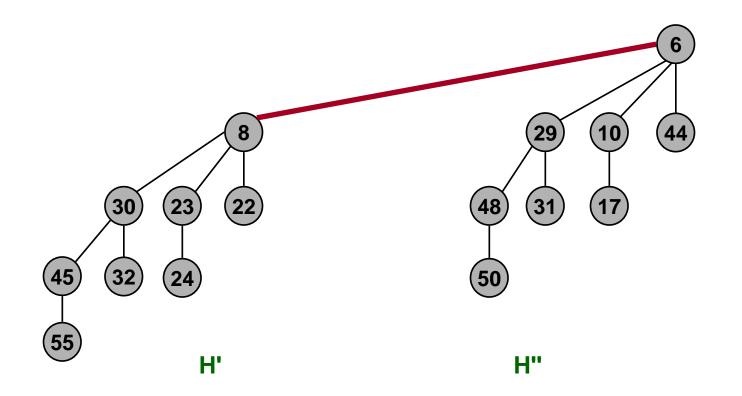
Properties of N-node binomial heap.

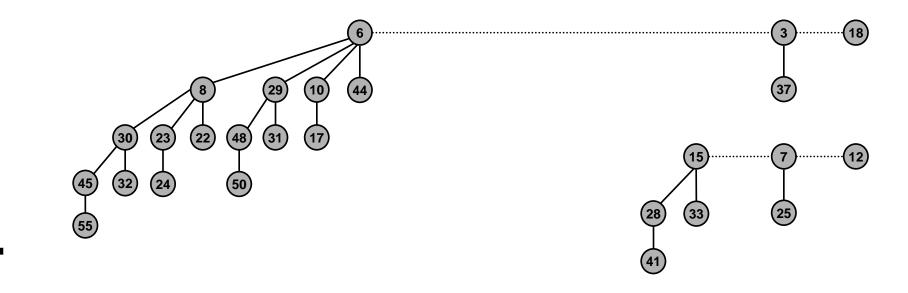
- Min key contained in root of B_0, B_1, \ldots, B_k .
- Contains binomial tree B_i iff $b_i = 1$ where $b_n \cdot b_2 b_1 b_0$ is binary representation of N.
- At most $\lfloor \log_2 N \rfloor + 1$ binomial trees.
- Height $\leq \lfloor \log_2 N \rfloor$.

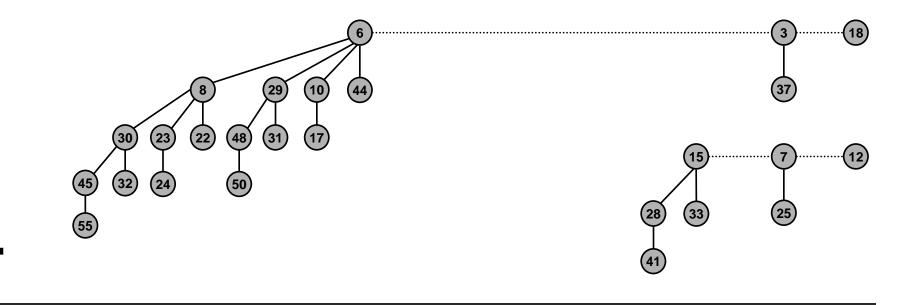


Create heap H that is union of heaps H' and H".

- . "Mergeable heaps."
- . Easy if H' and H" are each order k binomial trees.
 - connect roots of H' and H"
 - choose smaller key to be root of H







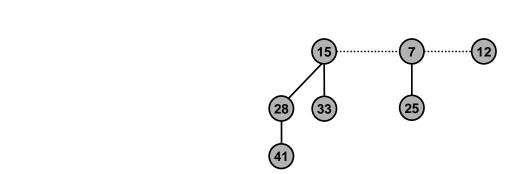
(32)

(45)

(55)

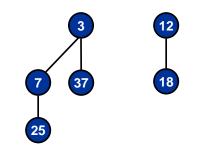
(24)

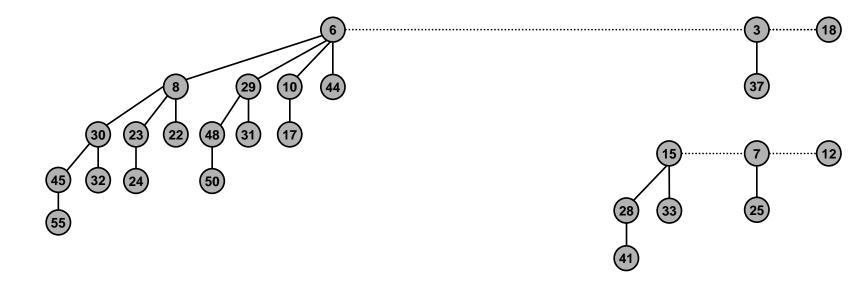
(50)

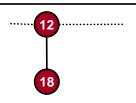


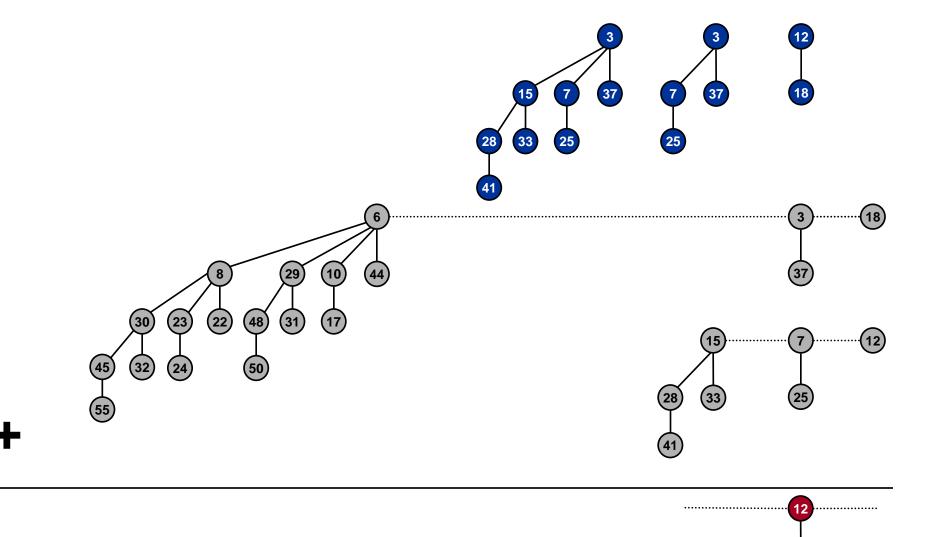
.....

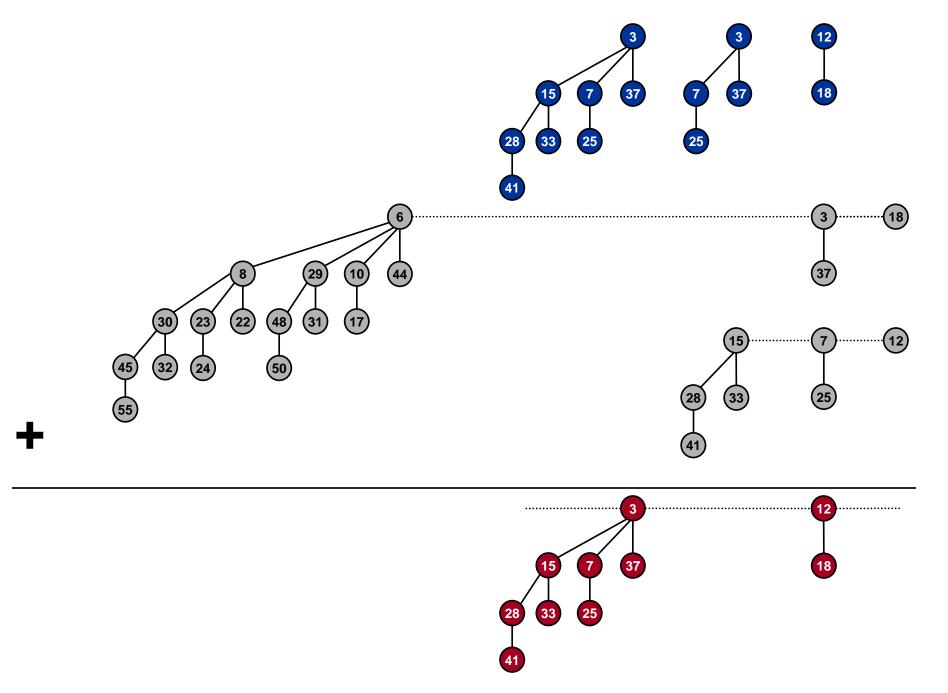
(18

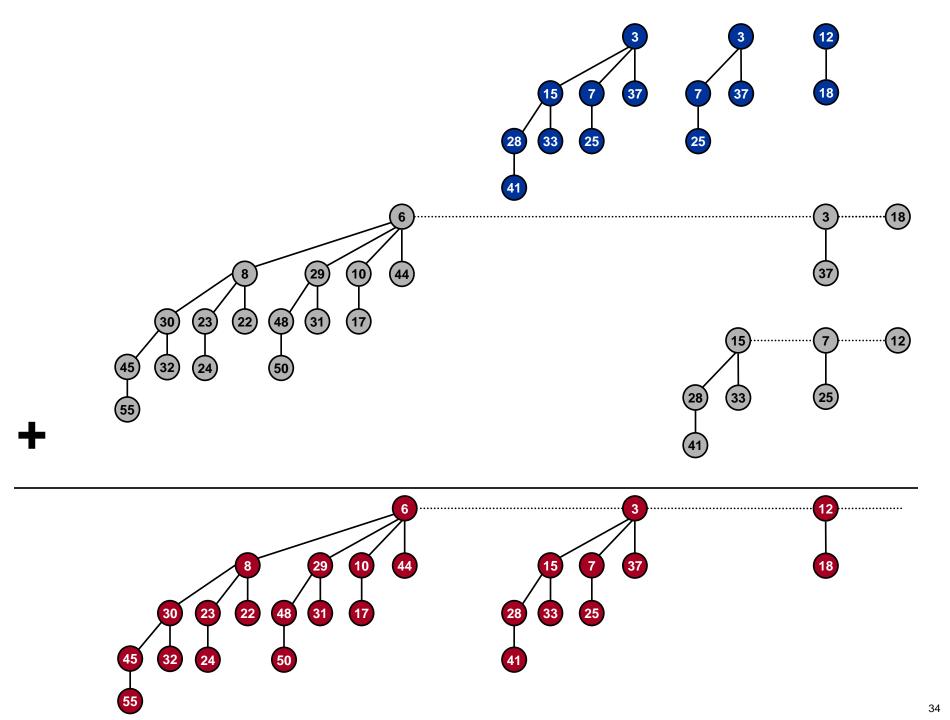










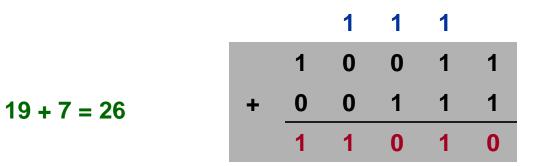


Create heap H that is union of heaps H' and H".

. Analogous to binary addition.

Running time. O(log N)

• Proportional to number of trees in root lists $\leq 2(\lfloor \log_2 N \rfloor + 1)$.

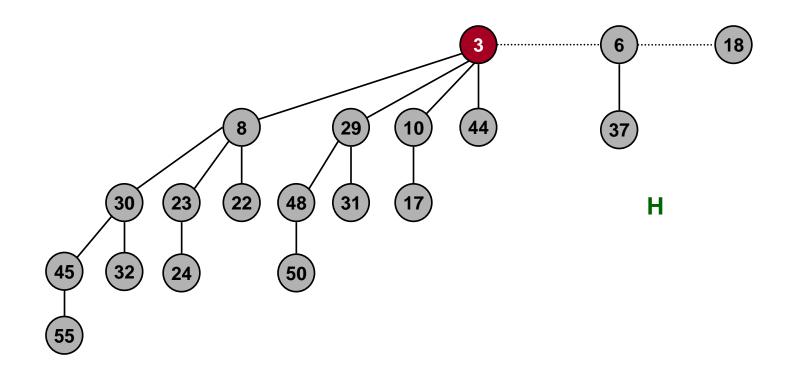


Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

- Find root x with min key in root list of H, and delete
- . H' \leftarrow broken binomial trees
- $H \leftarrow Union(H', H)$

Running time. O(log N)

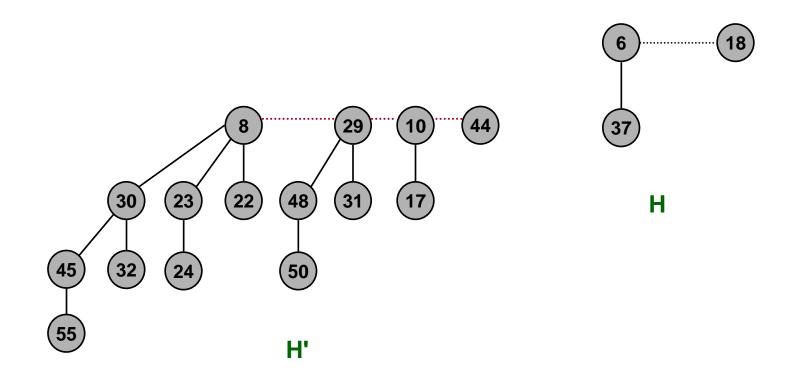


Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

- Find root x with min key in root list of H, and delete
- . H' \leftarrow broken binomial trees
- $H \leftarrow Union(H', H)$

Running time. O(log N)



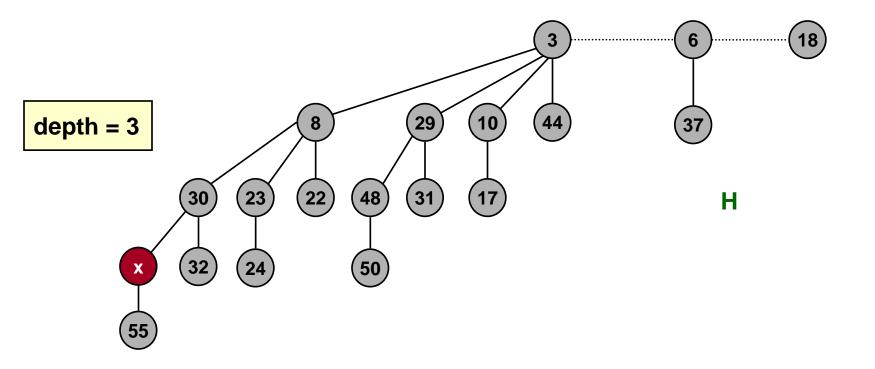
Binomial Heap: Decrease Key

Decrease key of node x in binomial heap H.

- . Suppose x is in binomial tree B_k.
- Bubble node x up the tree if x is too small.

Running time. O(log N)

• Proportional to depth of node $x \leq \lfloor \log_2 N \rfloor$.



Binomial Heap: Delete

Delete node x in binomial heap H.

- . Decrease key of x to $-\infty$.
- Delete min.

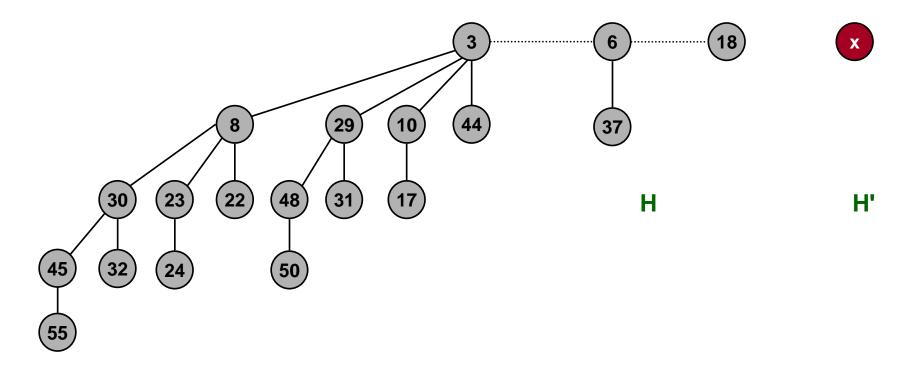
Running time. O(log N)

Binomial Heap: Insert

Insert a new node x into binomial heap H.

- . $H' \leftarrow MakeHeap(x)$
- $H \leftarrow Union(H', H)$

Running time. O(log N)



Binomial Heap: Sequence of Inserts

Insert a new node x into binomial heap H.

- If $N = \ldots 0$, then only 1 steps.
- If $N = \ldots \ldots 01$, then only 2 steps.
- If $N = \ldots 011$, then only 3 steps.
- If $N = \ldots 0111$, then only 4 steps.

• If N = 11...111, then $\log_2 N$ steps.

But, inserting sequence of N items takes O(N) time!

- . $(N/2)(1) + (N/4)(2) + (N/8)(3) + \ldots \le 2N$
- . Amortized analysis.
- Basis for getting most operations down to constant time.

$$\sum_{n=1}^{N} \frac{n}{2^{n}} = 2 - \frac{N}{2^{N}} - \frac{1}{2^{N-1}} \le 2$$

(44)

(10

6

Priority Queues

		Heaps				
Operation	Linked List	Binary	Binomial	Fibonacci *	Relaxed	
make-heap	1	1	1	1	1	
insert	1	log N	log N	1	1	
find-min	Ν	1	log N	1	1	
delete-min	Ν	log N	log N	log N	log N	
union	1	Ν	log N	1	1	
decrease-key	1	log N	log N	1	1	
delete	Ν	log N	log N	log N	log N	
is-empty	1	1	1	1	1	

