Binary and Binomial Heaps


grewe
Cross-Out


Binary Heap: Definition
Binary heap.
. Almost complete binary tree.
—filled on all levels, except last, where filled from left to right

. Min-heap ordered.
— every child greater than (or equal to) parent

D
(8 (52)

OO ORI
OIOIONGOEDIONC)



Binary Heap: Properties

Properties.
. Min element is in root.

. Heap with N elements has height =|log, N..

@ N=14
Height =3
(14 (55,

OO ORI
OIOIONGOEDIONC)



Binary Heaps: Array Implementation

Implementing binary heaps.
. Use an array: no need for explicit parent or child pointers.

- Parent (i) = li/2]
_Left(i) = 2i
"Right(i) = 2i + 1
(10 (35,
z 3
(78) Qe @D (53)
4 5 6 7



Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.

. Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

D
(8 (52)

OO ORI

@ @ @ Q @ @ @ 42 <:Z:nextfreeslot




Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.

. Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

@ swap with parent

(14 (15,

OO ORI
B @6 @ @ 6 @ €



Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.

. Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

@ swap with parent

(14 (15,

OEENONENCONEN -
ODO®®®E® @G

10



Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.
. Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence
. O(log N) operations.

@ stop: heap ordered

(10 2

® @ @
B @ @ @ @@

11



Binary Heap: Decrease Key

Decrease key of element x to k.
. Bubble up until it's heap ordered.

. O(log N) operations.

D
(8 (42,

O OENOENO
OIOIONOADIONDIC)

12



Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.

. Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted

06

(14 (12,

O OENOENO
OIOIONOADIONDIC)

13



Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.

. Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted

53

(14 (12,

O OENOENO
B @ @ @ @@ e

14



Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.

. Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted

53 exchange with left child

(14, (12,

OO ONNO
OIOIONGOEDIONC)

15



Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.

. Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted

@ exchange with right child

53 @
78) 18 G (9
(83 () (&0 () () (o) (0



Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.
. Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted
. O(log N) operations.

@ stop: heap ordered

(18, (12,

® @ @ @
6 6D @) @ @ @) 6

17



Binary Heap: Heapsort

Heapsort.
. Insert N items into binary heap.

. Perform N delete-min operations.
. O(Nlog N) sort.
- No extra storage.

18



Binary Heap: Union
Union.
. Combine two binary heaps H; and H, into a single heap.
- No easy solution.

— Q(N) operations apparently required
. Can support fast union with fancier heaps.

H, H,

(14 (11

(78)  (18) (s3)  (62)
(1) () @) (2 (9 (9

19



Priority Queues

Heaps
Operation Linked List  Binary Binomial Fibonacci* Relaxed

make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1

delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1

delete N log N log N log N log N
IS-empty 1 1 1 1 1

20



Binomial tree.
. Recursive definition:

Binomial Tree

21



Binomial Tree

Useful properties of order k binomial tree B,.

Proof.

. Number of nodes = 2k,
. Height = k.
. Degree of root = k.

. Deleting root yields binomial
trees B, 4, ..., Bg.

. By induction on k.

22



Binomial Tree

A property useful for naming the data structure.
. B, has (k] nodes at depth i.

depth O

depth 1

depth 2

depth 3

depth 4

23



Binomial Heap

Binomial heap. Vuillemin, 1978.
. Sequence of binomial trees that satisfy binomial heap property.

—each tree is min-heap ordered
—~ 0 or 1 binomial tree of order k

24



Binomial Heap: Implementation

Implementation.
. Represent trees using left-child, right sibling pointers.
—three links per node (parent, left, right)
. Roots of trees connected with singly linked list.

— degrees of trees strictly decreasing from left to right

Binomial Heap Leftist Power-of-2 Heap

25



Binomial Heap: Properties

Properties of N-node binomial heap.
. Min key contained in root of By, B4, . . .,

. Contains binomial tree B, iff b, = 1 where b,- b,b,b, is binary

representation of N.
. At most |log, NJ+ 1 binomial trees.
. Height < [log, N.

N=19

#trees =3
height =4
binary = 10011

B,

26



Binomial Heap: Union

Create heap H that is union of heaps H' and H".
. "Mergeable heaps."

. Easy if H' and H'" are each order k binomial trees.

— connect roots of H' and H"
— choose smaller key to be root of H

(8] 29 ) @

(0 @) @ 48 Gy @
1) @ @ 50

27



Binomial Heap: Union

@
1 1 1
O 0 1 1
19+ 7 = 26 + 0 0 1 1 1
1 1 0 1 O

28



Binomial Heap: Union

29



Binomial Heap: Union

30



31



32



33



34



Binomial Heap: Union

Create heap H that is union of heaps H' and H".
. Analogous to binary addition.

Running time. O(log N)
. Proportional to number of trees in root lists < 2(Llog, NJ + 1).

1 1 1

0 0 1 1

19 +7 =26 + 0 0 1 1 1
1 1 0 1 0

35



Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
. Find root x with min key in root list of H, and delete

. H' <« broken binomial trees
. H « Union(H', H)

Running time. O(log N)

36



Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
. Find root x with min key in root list of H, and delete

. H' <« broken binomial trees
. H « Union(H', H)

Running time. O(log N)

37



Binomial Heap: Decrease Key

Decrease key of node x in binomial heap H.
. Suppose x is in binomial tree B,.

. Bubble node x up the tree if x is too small.

Running time. O(log N)
. Proportional to depth of node x < |log, NJ.

38



Binomial Heap: Delete

Delete node x in binomial heap H.
. Decrease key of x to -oo.

. Delete min.

Running time. O(log N)

39



Binomial Heap: Insert

Insert a new node x into binomial heap H.
. H' « MakeHeap(x)

. H « Union(H', H)

Running time. O(log N)

40



Binomial Heap: Sequence of Inserts

Insert a new node x into binomial heap H.

< IfN= ... ... 0, then only 1 steps. () (6)
- FN= ...... 01, then only 2 steps.
- IfN= ... 011, then only 3 steps. J © @ &)
. IfN= ....0111, then only 4 steps. (a8) 3y ()

Q)

Inserting 1 item can take Q(log N) time.
. IfN=11...111, then log, N steps.

But, inserting sequence of N items takes O(N) time!
- (N/2)(1) + (N/4)(2) + (N/8)(3) + ... <2N

. Amortized analysis.

. Basis for getting most operations
down to constant time.

IA
N




Priority Queues

Heaps
Operation Linked List  Binary Binomial Fibonacci* Relaxed

make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1

delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1

delete N log N log N log N log N
IS-empty 1 1 1 1 1

{}

just did this

42





