
Binary and Binomial Heaps 

These lecture slides are adapted 

from CLRS, Chapters 6, 19. 
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Binary Heap:  Definition 

Binary heap. 

 Almost complete binary tree. 

– filled on all levels, except last, where filled from left to right 

 Min-heap ordered. 

– every child greater than (or equal to) parent 
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Binary Heap:  Properties 

Properties. 

 Min element is in root. 

 Heap with N elements has height = log2 N. 
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Binary Heaps:  Array Implementation 

Implementing binary heaps. 

 Use an array:  no need for explicit parent or child pointers. 

– Parent(i) = i/2  

– Left(i)   = 2i  

– Right(i)  = 2i + 1  
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Binary Heap:  Insertion 

Insert element x into heap. 

 Insert into next available slot. 

 Bubble up until it's heap ordered. 

– Peter principle:  nodes rise to level of incompetence 
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Binary Heap:  Insertion 

Insert element x into heap. 

 Insert into next available slot. 

 Bubble up until it's heap ordered. 

– Peter principle:  nodes rise to level of incompetence 
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Binary Heap:  Insertion 

Insert element x into heap. 

 Insert into next available slot. 

 Bubble up until it's heap ordered. 

– Peter principle:  nodes rise to level of incompetence 
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Binary Heap:  Insertion 

Insert element x into heap. 

 Insert into next available slot. 

 Bubble up until it's heap ordered. 

– Peter principle:  nodes rise to level of incompetence 

 O(log N) operations. 
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Binary Heap:  Decrease Key 

Decrease key of element x to k. 

 Bubble up until it's heap ordered. 

 O(log N) operations. 
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Binary Heap:  Delete Min 

Delete minimum element from heap. 

 Exchange root with rightmost leaf. 

 Bubble root down until it's heap ordered. 

– power struggle principle:  better subordinate is promoted 
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Binary Heap:  Delete Min 

Delete minimum element from heap. 

 Exchange root with rightmost leaf. 

 Bubble root down until it's heap ordered. 

– power struggle principle:  better subordinate is promoted 
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Binary Heap:  Delete Min 

Delete minimum element from heap. 

 Exchange root with rightmost leaf. 

 Bubble root down until it's heap ordered. 

– power struggle principle:  better subordinate is promoted 
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Binary Heap:  Delete Min 

Delete minimum element from heap. 

 Exchange root with rightmost leaf. 

 Bubble root down until it's heap ordered. 

– power struggle principle:  better subordinate is promoted 
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Binary Heap:  Delete Min 

Delete minimum element from heap. 

 Exchange root with rightmost leaf. 

 Bubble root down until it's heap ordered. 

– power struggle principle:  better subordinate is promoted 

 O(log N) operations. 
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Binary Heap:  Heapsort 

Heapsort. 

 Insert N items into binary heap. 

 Perform N delete-min operations. 

 O(N log N) sort. 

 No extra storage. 
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Binary Heap:  Union 

Union. 

 Combine two binary heaps H1 and H2 into a single heap. 

 No easy solution. 

– (N) operations apparently required 

 Can support fast union with fancier heaps. 
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Binomial Tree 

Binomial tree. 

 Recursive definition: 

 

Bk-1 

Bk-1 

B0 Bk 

B0 B1 B2 B3 B4 



22 

Binomial Tree 

Useful properties of order k binomial tree Bk. 

 Number of nodes = 2k. 

 Height = k. 

 Degree of root = k. 

 Deleting root yields binomial 

trees Bk-1, … , B0. 

 

Proof. 

 By induction on k. 
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Binomial Tree 

A property useful for naming the data structure. 

 Bk  has        nodes at depth i. 
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Binomial Heap 

Binomial heap.  Vuillemin, 1978. 

 Sequence of binomial trees that satisfy binomial heap property. 

– each tree is min-heap ordered 

– 0 or 1 binomial tree of order k 
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Binomial Heap:  Implementation 

Implementation. 

 Represent trees using left-child, right sibling pointers. 

– three links per node (parent, left, right) 

 Roots of trees connected with singly linked list. 

– degrees of trees strictly decreasing from left to right 

50 

48 31 17 

44 10 

6 

37 

3 18 

29 

6 

37 

3 18 

48 

31 50 

10 

44 17 

heap 

29 

Leftist Power-of-2 Heap Binomial Heap 



26 

Binomial Heap:  Properties 

Properties of N-node binomial heap. 

 Min key contained in root of B0, B1, . . . , Bk.  

 Contains binomial tree Bi iff bi = 1 where bn b2b1b0 is binary 

representation of N. 

 At most  log2 N + 1 binomial trees. 

 Height    log2 N. 
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Binomial Heap:  Union 

Create heap H that is union of heaps H' and H''. 

 "Mergeable heaps." 

 Easy if H' and H'' are each order k binomial trees. 

– connect roots of H' and H'' 

– choose smaller key to be root of H  

H'' 
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Binomial Heap:  Union 
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Binomial Heap:  Union 
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Binomial Heap:  Union 
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Binomial Heap:  Union 

Create heap H that is union of heaps H' and H''. 

 Analogous to binary addition. 

 

Running time.  O(log N) 

 Proportional to number of trees in root lists    2( log2 N + 1). 
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Binomial Heap:  Delete Min 

Delete node with minimum key in binomial heap H. 

 Find root x with min key in root list of H, and delete 

 H'   broken binomial trees 

 H    Union(H', H) 

 

Running time.  O(log N) 
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Binomial Heap:  Delete Min 

Delete node with minimum key in binomial heap H. 

 Find root x with min key in root list of H, and delete 

 H'   broken binomial trees 

 H    Union(H', H) 

 

Running time.  O(log N) 
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Binomial Heap:  Decrease Key 

Decrease key of node x in binomial heap H. 

 Suppose x is in binomial tree Bk. 

 Bubble node x up the tree if x is too small. 

 

Running time.  O(log N) 

 Proportional to depth of node x    log2 N . 

depth = 3 
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Binomial Heap:  Delete 

Delete node x in binomial heap H. 

 Decrease key of x to -. 

 Delete min. 

 

Running time.  O(log N) 
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Binomial Heap:  Insert 

Insert a new node x into binomial heap H. 

 H'   MakeHeap(x) 

 H    Union(H', H) 

 

Running time.  O(log N) 
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Binomial Heap:  Sequence of Inserts 

Insert a new node x into binomial heap H. 

 If N =  .......0, then only 1 steps. 

 If N =  ......01, then only 2 steps. 

 If N =  .....011, then only 3 steps. 

 If N =  ....0111, then only 4 steps. 

 

 

Inserting 1 item can take (log N) time. 

 If N =  11...111, then log2 N steps. 

 

But, inserting sequence of N items takes O(N) time! 

 (N/2)(1) + (N/4)(2) + (N/8)(3) + . . .   2N 

 Amortized analysis. 

 Basis for getting most operations 

down to constant time. 

50 

48 31 17 

44 29 10 

3 

37 

6 x 

2
2

1

2
2

2
1

1







NN

N

n
n

Nn



42 

Priority Queues 

make-heap 

Operation 

insert 

find-min 

delete-min 

union 

decrease-key 

delete 

1 

Binary 

log N 

1 

log N 

N 

log N 

log N 

1 

Binomial 

log N 

log N 

log N 

log N 

log N 

log N 

1 

Fibonacci * 

1 

1 

log N 

1 

1 

log N 

1 

Relaxed 

1 

1 

log N 

1 

1 

log N 

1 

Linked List 

1 

N 

N 

1 

1 

N 

is-empty 1 1 1 1 1 

Heaps 

just did this 




