
Amortized Analysis (chap. 17)
• Not just consider one operation, but a sequence of

operations on a given data structure.

• Average cost over a sequence of operations.

• Probabilistic analysis:
– Average case running time: average over all possible inputs for

one algorithm (operation).

– If using probability, called expected running time.

• Amortized analysis:
– No involvement of probability

– Average performance on a sequence of operations, even some
operation is expensive.

– Guarantee average performance of each operation among the
sequence in worst case.

grewe
Cross-Out

grewe
Text Box
Used a lot for "Online Programs" ---not Internet Online --- it means in comparison to "Offline" programs you do not know input at start time of program

Three Methods of Amortized Analysis

• Aggregate analysis:
– Total cost of n operations/n,

• Accounting method:
– Assign each type of operation an (different) amortized cost

– overcharge some operations,

– store the overcharge as credit on specific objects,

– then use the credit for compensation for some later
operations.

• Potential method:
– Same as accounting method

– But store the credit as “potential energy” and as a whole.

Example for amortized analysis

• Stack operations:
– PUSH(S,x), O(1)

– POP(S), O(1)

– MULTIPOP(S,k), min(s,k)
• while not STACK-EMPTY(S) and k>0

• do POP(S)

• k=k-1

• Let us consider a sequence of n PUSH, POP,
MULTIPOP.
– The worst case cost for MULTIPOP in the sequence is

O(n), since the stack size is at most n.

– thus the cost of the sequence is O(n2). Correct, but not
tight.

Aggregate Analysis
• In fact, a sequence of n operations on an

initially empty stack cost at most O(n). Why?

Each object can be POP only once (including in MULTIPOP) for each time

it is PUSHed. #POPs is at most #PUSHs, which is at most n.

Thus the average cost of an operation is O(n)/n = O(1).

Amortized cost in aggregate analysis is defined to be average cost.

Another example: increasing a binary counter

• Binary counter of length k, A[0..k-1] of bit

array.

• INCREMENT(A)

1. i0

2. while i<k and A[i]=1

3. do A[i]0 (flip, reset)

4. ii+1

5. if i<k

6. then A[i]1 (flip, set)

Analysis of INCREMENT(A)

• Cursory analysis:

– A single execution of INCREMENT takes

O(k) in the worst case (when A contains all

1s)

– So a sequence of n executions takes O(nk)

in worst case (suppose initial counter is 0).

– This bound is correct, but not tight.

• The tight bound is O(n) for n executions.

Amortized (Aggregate) Analysis of INCREMENT(A)

Observation: The running time determined by #flips

 but not all bits flip each time INCREMENT is called.

A[0] flips every time, total n times.

A[1] flips every other time, n/2 times.

A[2] flips every forth time, n/4 times.

….

for i=0,1,…,k-1, A[i] flips n/2i times.

Thus total #flips is i=0
k-1 n/2i

 < ni=0
 1/2i

 =2n.

Amortized Analysis of INCREMENT(A)

• Thus the worst case running time is O(n)

for a sequence of n INCREMENTs.

• So the amortized cost per operation is

O(1).

Amortized Analysis: Accounting Method

• Idea:
– Assign differing charges to different operations.

– The amount of the charge is called amortized cost.

– amortized cost is more or less than actual cost.

– When amortized cost > actual cost, the difference is
saved in specific objects as credits.

– The credits can be used by later operations whose
amortized cost < actual cost.

• As a comparison, in aggregate analysis, all
operations have same amortized costs.

Accounting Method (cont.)

• Conditions:
– suppose actual cost is ci for the ith operation in the

sequence, and amortized cost is ci',

– i=1
n ci' i=1

n ci should hold.

• since we want to show the average cost per

operation is small using amortized cost, we need the

total amortized cost is an upper bound of total actual cost.

• holds for all sequences of operations.

– Total credits is i=1
n ci' - i=1

n ci , which should be

nonnegative,

• Moreover, i=1
t ci' - i=1

t ci ≥0 for any t>0.

Accounting Method: Stack Operations

• Actual costs:
– PUSH :1, POP :1, MULTIPOP: min(s,k).

• Let assign the following amortized costs:
– PUSH:2, POP: 0, MULTIPOP: 0.

• Similar to a stack of plates in a cafeteria.
– Suppose $1 represents a unit cost.

– When pushing a plate, use one dollar to pay the actual cost of the push and
leave one dollar on the plate as credit.

– Whenever POPing a plate, the one dollar on the plate is used to pay the actual
cost of the POP. (same for MULTIPOP).

– By charging PUSH a little more, do not charge POP or MULTIPOP.

• The total amortized cost for n PUSH, POP, MULTIPOP is O(n), thus O(1)
for average amortized cost for each operation.

• Conditions hold: total amortized cost ≥total actual cost, and amount of
credits never becomes negative.

Accounting method: binary counter

• Let $1 represent each unit of cost (i.e., the flip of one bit).

• Charge an amortized cost of $2 to set a bit to 1.

• Whenever a bit is set, use $1 to pay the actual cost, and
store another $1 on the bit as credit.

• When a bit is reset, the stored $1 pays the cost.

• At any point, a 1 in the counter stores $1, the number of 1’s
is never negative, so is the total credits.

• At most one bit is set in each operation, so the amortized
cost of an operation is at most $2.

• Thus, total amortized cost of n operations is O(n), and
average is O(1).

The Potential Method

• Same as accounting method: something

prepaid is used later.

• Different from accounting method

– The prepaid work not as credit, but as

“potential energy”, or “potential”.

– The potential is associated with the data

structure as a whole rather than with

specific objects within the data structure.

The Potential Method (cont.)

• Initial data structure D0,

• n operations, resulting in D0, D1,…, Dn with costs c1,

c2,…, cn.

• A potential function : {Di}  R (real numbers)

• (Di) is called the potential of Di.

• Amortized cost ci' of the ith operation is:

– ci' = ci + (Di) - (Di-1). (actual cost + potential change)

• i=1
n ci'

 = i=1
n (ci + (Di) - (Di-1))

• = i=1
nci + (Dn) - (D0)

The Potential Method (cont.)

• If (Dn)  (D0), then total amortized cost is an upper
bound of total actual cost.

• But we do not know how many operations, so (Di) 
(D0) is required for any i.

• It is convenient to define (D0)=0,and so (Di) 0, for all i.

• If the potential change is positive (i.e., (Di) - (Di-1)>0),
then ci' is an overcharge (so store the increase as
potential),

• otherwise, undercharge (discharge the potential to pay the
actual cost).

Potential method: stack operation

• Potential for a stack is the number of objects in the stack.

• So (D0)=0, and (Di) 0

• Amortized cost of stack operations:
– PUSH:

• Potential change: (Di)- (Di-1) =(s+1)-s =1.

• Amortized cost: ci' = ci + (Di) - (Di-1)=1+1=2.

– POP:
• Potential change: (Di)- (Di-1) =(s-1) –s= -1.

• Amortized cost: ci' = ci + (Di) - (Di-1)=1+(-1)=0.

– MULTIPOP(S,k): k'=min(s,k)
• Potential change: (Di)- (Di-1) = –k'.

• Amortized cost: ci' = ci + (Di) - (Di-1)=k'+(-k')=0.

• So amortized cost of each operation is O(1), and total amortized cost of n
operations is O(n).

• Since total amortized cost is an upper bound of actual cost, the worse case
cost of n operations is O(n).

Potential method: binary counter

• Define the potential of the counter after the ith INCREMENT is
(Di) =bi, the number of 1’s. clearly, (Di)0.

• Let us compute amortized cost of an operation
– Suppose the ith operation resets ti bits.

– Actual cost ci of the operation is at most ti +1.

– If bi=0, then the ith operation resets all k bits, so bi-1=ti=k.

– If bi>0, then bi=bi-1-ti+1

– In either case, bibi-1-ti+1.

– So potential change is (Di) - (Di-1) bi-1-ti+1-bi-1=1-ti.

– So amortized cost is: ci' = ci + (Di) - (Di-1)  ti +1+1-ti=2.

• The total amortized cost of n operations is O(n).

• Thus worst case cost is O(n).

Amortized analyses: dynamic table

• A nice use of amortized analysis

• Table-insertion, table-deletion.

• Scenario:
– A table –maybe a hash table

– Do not know how large in advance

– May expend with insertion

– May contract with deletion

– Detailed implementation is not important

• Goal:
– O(1) amortized cost.

– Unused space always ≤ constant fraction of allocated space.

Dynamic table

• Load factor α = num/size, where num = #

items stored, size = allocated size.

• If size = 0, then num = 0. Call α = 1.

• Never allow α > 1.

• Keep α >a constant fraction  goal (2).

Dynamic table: expansion with insertion

• Table expansion

• Consider only insertion.

• When the table becomes full, double its

size and reinsert all existing items.

• Guarantees that α ≥ 1/2.

• Each time we actually insert an item into

the table, it’s an elementary insertion.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Num[t] ele. insertion

1 ele. insertion

Initially, num[T] = size[T] = 0.

Aggregate analysis

• Running time: Charge 1 per elementary insertion. Count only
elementary insertions,

• since all other costs together are constant per call.

• ci = actual cost of ith operation
– If not full, ci = 1.

– If full, have i − 1 items in the table at the start of the ith operation. Have
to copy all i − 1 existing items, then insert ith item,  ci = i

• Cursory analysis: n operations  ci = O(n)  O(n2) time for n
operations.

• Of course, we don’t always expand:
– ci = i if i − 1 is exact power of 2 ,

 1 otherwise .

• So total cost =i=1
n ci ≤n+ i=0

log(n) 2i ≤n+2n=3n

• Therefore, aggregate analysis says amortized cost per operation =
3.

Accounting analysis

• Charge $3 per insertion of x.
– $1 pays for x’s insertion.

– $1 pays for x to be moved in the future.

– $1 pays for some other item to be moved.

• Suppose we’ve just expanded, size = m before next expansion, size
= 2m after next expansion.

• Assume that the expansion used up all the credit, so that there’s no
credit stored after the expansion.

• Will expand again after another m insertions.

• Each insertion will put $1 on one of the m items that were in the
table just after expansion and will put $1 on the item inserted.

• Have $2m of credit by next expansion, when there are 2m items to
move. Just enough to pay for the expansion, with no credit left over!

Potential method

• Potential method

• (T) = 2 ・ num[T] − size[T]

• Initially, num = size = 0  = 0.

• • Just after expansion, size = 2 ・ num   = 0.

• Just before expansion, size = num   = num
 have enough potential to pay for moving all
items.

• Need  ≥ 0, always.

• Always have

– size ≥ num ≥ ½ size  2 ・ num ≥ size   ≥ 0 .

Potential method

• Amortized cost of ith operation:
– numi = num after ith operation ,

– sizei = size after ith operation ,

– i =  after ith operation .

• If no expansion:
– sizei = sizei−1 ,

– numi = numi−1 +1 ,

– ci = 1 .

• Then we have
– Ci’ = ci + i − i−1 = 1 + (2numi −sizei) − (2numi−1 −sizei−1) =3.

• If expansion:
– sizei = 2sizei−1 ,

– sizei−1 = numi−1 = numi −1 ,

– ci = numi−1 +1 = numi.

• Then we have

• Ci’ = ci + i − i−1 = numi + (2numi −sizei) − (2numi−1 −sizei−1) = numi +
(2numi −2(numi −1)) − (2(numi −1) − (numi −1)) = numi + 2 − (numi −1) = 3

Expansion and contraction

• Expansion and contraction

• When α drops too low, contract the table.

– Allocate a new, smaller one.

– Copy all items.

• Still want

– α bounded from below by a constant,

– amortized cost per operation = O(1).

• Measure cost in terms of elementary
insertions and deletions.

Obvious strategy

• Double size when inserting into a full table (when α = 1, so that after
insertion α would become <1).

• Halve size when deletion would make table less than half full (when
α = 1/2, so that after deletion α would become >= 1/2).

• Then always have 1/2 ≤ α ≤ 1.

• Suppose we fill table.
– Then insert  double

– 2 deletes  halve

– 2 inserts  double

– 2 deletes  halve

– ・ ・ ・

– Cost of each expansion or contraction is (n), so total n operation will
be (n2).

• Problem is that: Not performing enough operations after expansion
or contraction to pay for the next one.

Simple solution

• Double as before: when inserting with α = 1  after doubling, α = 1/2.

• Halve size when deleting with α = 1/4  after halving, α = 1/2.

• Thus, immediately after either expansion or contraction, have α = 1/2.

• Always have 1/4 ≤ α ≤ 1.

• Intuition:

• Want to make sure that we perform enough operations between
consecutive expansions/contractions to pay for the change in table
size.

• Need to delete half the items before contraction.

• Need to double number of items before expansion.

• Either way, number of operations between expansions/contractions is
at least a constant fraction of number of items copied.

Potential function

• (T) = 2num[T] − size[T] if α ≥ ½

 size[T]/2 −num[T] ifα < ½ .

• T empty   = 0.

• α ≥ 1/2  num ≥ 1/2size  2num ≥ size

  ≥ 0.

• α < 1/2  num < 1/2size   ≥ 0.

intuition

• measures how far from α = 1/2 we are.
– α = 1/2   = 2num−2num = 0.

– α = 1   = 2num−num = num.

– α = 1/4   = size /2 − num = 4num /2 − num = num.

• Therefore, when we double or halve, have enough potential to pay for
moving all num items.

• Potential increases linearly between α = 1/2 and α = 1, and it also increases
linearly between α = 1/2 and α = 1/4.

• Since α has different distances to go to get to 1 or 1/4, starting from 1/2,
rate of increase differs.

• For α to go from 1/2 to 1, num increases from size /2 to size, for a total
increase of size /2.  increases from 0 to size. Thus,  needs to increase
by 2 for each item inserted. That’s why there’s a coefficient of 2 on the
num[T] term in the formula for when α ≥ 1/2.

• For α to go from 1/2 to 1/4, num decreases from size /2 to size /4, for a total
decrease of size /4.  increases from 0 to size /4. Thus,  needs to
increase by 1 for each item deleted. That’s why there’s a coefficient of −1 on
the num[T] term in the formula for when α < 1/2.

• Amortized costs: more cases

– insert, delete

– α ≥ 1/2, α < 1/2 (use αi, since α can vary a lot)

– size does/doesn’t change

Amortized cost for each operation

Splay tree

• A binary search tree (not balanced)

• Height may be larger than log n, even n-1.

• However a sequence of n operations takes O(nlog n).

• Assumptions: data values are distinct and form a totally
order set

• Operations:
– Member(i,S)

– Insert(i,S)

– Delete(i,S)

– Merge(S,S’)

– Split(i,S)

– All based on
• splay(i,S), reorganize tree so that i to be root if iS, otherwise, the

new root is either max{k S |k<i} or min{k S |k>i}

Splay tree (cont.)

• For examples,

– merge(S,S’)
• Call Splay(, S) and then make S’ the right child

– Delete(i,S), call Splay(i,S), remove I, then
merge(left(i), right(i)).

– Similar for others.

– Constant number of splays called.

Splay tree (cont.)
• Splay operation is based on basic rotate(x)

operation (either left or right).

• Three cases:

– p is the parent of x and x has not grandparent
• rotate(x)

– x is the left (or right) child of p and p is the left
(or right) child of g,

• Rotate(p) and then rotate(x)\

– x is the left (or right) child of p and p is the
right (or left) child of g,

• rotate(x) and then rotate(x)

Case 1: Zip Step

p is the parent of x and x has not grandparent

rotate(x)

Case 2: Zip-Zip Step

x is the left (or right) child of p and p is the left (or
right) child of g,

Rotate(p) and then rotate(x)\

Case 3: Zip-Zag Step

x is the left (or right) child of p and p is
the right (or left) child of g,

rotate(x) and then rotate(x)

Splay tree (cont.)

• Credit invariant: Node x always has at
least log (x) credits on deposit.

– Where (S)=log (|S|) and (x)=(S(x))

• Lemma:

– Each operation splay(x,S) requires no more
than 3((S)-(x))+1 credits to perform the
operation and maintain the credit invariant.

• Theorem:

– A sequence of m operations involving n inserts
takes time O(mlog(n)).

• Read more about this …

Summary

• Amortized analysis

– Different from probabilistic analysis

• Three methods and their differences

• how to analyze

	Blank Page

