Used a lot for "Online Programs" ---not
Internet Online --- it means in

Amortized Analysis & on i

do not know input at start time of

program

Not just consider one operation, but a sequence of
operations on a given data structure.

Average cost over a sequence of operations.

Probabilistic analysis:

— Average case running time: average over all possible inputs for
one algorithm (operation).

— If using probability, called expected running time.

Amortized analysis:
— No involvement of probability

— Average p_erformanc_:e on a sequence of operations, even some
operation IS expensive.

— Guarantee average performance of each operation among the
sequence in worst case.

grewe
Cross-Out

grewe
Text Box
Used a lot for "Online Programs" ---not Internet Online --- it means in comparison to "Offline" programs you do not know input at start time of program

Three Methods of Amortized Analysis

« Aggregate analysis:

— Total cost of n operations/n,

« Accounting method:

— Assign each type of operation an (different) amortized cost
— overcharge some operations,

— store the overcharge as credit on specific objects,

— then use the credit for compensation for some later
operations.

« Potential method:
— Same as accounting method
— But store the credit as “potential energy” and as a whole.

Example for amortized analysis

« Stack operations:
— PUSH(S,x), O(1)
— POP(S), O(1)
— MULTIPOP(S,K), min(s,k)
* while not STACK-EMPTY(S) and k>0

do POP(S)
k=k-1

* Let us consider a sequence of n PUSH, POP,

MULTIPOP.

— The worst case cost for MULTIPOP in the sequence is
O(n), since the stack size is at most n.

— thus the cost of the sequence is O(n?). Correct, but not
tight.

Aggregate Analysis

* In fact, a sequence of n operations on an
Initially empty stack cost at most O(n). Why?

Each object can be POP only once (including in MULTIPOP) for each time
It Is PUSHed. #POPs is at most #PUSHSs, which is at most n.

Thus the average cost of an operation is O(n)/n = O(1).

Amortized cost in aggregate analysis is defined to be average cost.

o 0k wWbhRE

Another example: increasing a binary counter

Binary counter of length k, A[O..k-1] of bit
array.

INCREMENT(A)
1<-0
while i<k and AJi]=1
do AJi]<0 (flip, reset)
1<i+1
It i<k
then AJi]<1 (flip, set)

Analysis of INCREMENT(A)

« Cursory analysis:

— A single execution of INCREMENT takes
O(k) in the worst case (when A contains all
1s)

— S0 a sequence of n executions takes O(nk)
INn worst case (suppose Iinitial counter is 0).

— This bound is correct, but not tight.
* The tight bound i1s O(n) for n executions.

Amortized (Aggregate) Analysis of INCREMENT(A)

Observation: The running time determined by #flips
but not all bits flip each time INCREMENT is called.

Counter Total

valie SOSARAORS o)))
s 0000800 © A[0] flips every time, total n times,
) BonhoaT 4 A[1] flips every other time, | n/2] times.
X 01 c - -
: 000001 om 7 A[2] flips every forth time, | n/4] times.
5 0001 1 8
6 330001_1'0 10
7 000 00NNNE 11 _ _] i .
s e lomm & for i=0,1,....k-1, A[i] flips Ln/2i] times.
0 00001010 18
|’|) 0000 111 ig - - k-l i
2 000011 oM 2 Thus total #flips is X< L.n/2 J
s 00 o EEEEEE o <nY_,~1/2!
16 00010000 31

=2n.

Figure 17.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 INCREMENT
operations. Bits that flip to achieve the next value are shaded, The running cost for flipping bits is
shown at the right. Notice that the total cost is never more than twice the total number of INCREMENT
operations.

Amortized Analysis of INCREMENT(A)

* Thus the worst case running time is O(n)
for a sequence of n INCREMENTSs.

« So the amortized cost per operation Is
O(1).

Amortized Analysis: Accounting Method

* |dea:
— Assign differing charges to different operations.
— The amount of the charge is called amortized cost.
— amortized cost is more or less than actual cost.

— When amortized cost > actual cost, the difference is
saved in specific objects as credits.

— The credits can be used by later operations whose
amortized cost < actual cost.

« As a comparison, in aggregate analysis, all
operations have same amortized costs.

Accounting Method (cont.)

 Conditions:

— suppose actual cost is c; for the ith operation in the
sequence, and amortized cost is ¢,

— >.."c'>>._,"c, should hold.
 since we want to show the average cost per

operation is small using amortized cost, we need the
total amortized cost IS an upper bound of total actual cost.

* holds for all sequences of operations.
— Total credits is 2.._,"¢' - 2._,"¢;, which should be
nonnegative,
* Moreover, 2._,tc' - 2._,tc. 20 for any t>0.

Accounting Method: Stack Operations

Actual costs:
— PUSH :1, POP :1, MULTIPOP: min(s,k).
Let assign the following amortized costs:
— PUSH:2, POP: 0, MULTIPOP: 0.
Similar to a stack of plates in a cafeteria.
— Suppose $1 represents a unit cost.

— When pushing a plate, use one dollar to pay the actual cost of the push and
leave one dollar on the plate as credit.

— Whenever POPIng a plate, the one dollar on the plate is used to pay the actual
cost of the POP. (same for MULTIPOP).

By charging PUSH a little more, do not charge POP or MULTIPOP.

The total amortized cost for n PUSH, POP, MULTIPOP is O(n), thus O(1)
for average amortized cost for each operatlon

Conditions hold: total amortized cost 2total actual cost, and amount of
credits never becomes negative.

Accounting method: binary counter

Let $1 represent each unit of cost (i.e., the flip of one bit).
Charge an amortized cost of $2 to set a bit to 1.

Whenever a bit is set, use $1 to pay the actual cost, and
store another $1 on the bit as credit.

When a bit is reset, the stored $1 pays the cost.

At any point, a 1 in the counter stores $1, the number of 1’s
IS never negative, so is the total credits.

At most one bit is set in each operation, so the amortized
cost of an operation is at most $2.

Thus, total amortized cost of n operations is O(n), and
average is O(1).

The Potential Method

« Same as accounting method: something
prepaid is used later.

 Different from accounting method

— The prepaid work not as credit, but as
“potential energy”, or “potential”.

— The potential is associated with the data
structure as a whole rather than with
specific objects within the data structure.

The Potential Method (cont.)

Initial data structure Dy,
n operations, resulting in D,, D4,..., D,, with costs c,,
Cpyerns Cpe
A potential function ®: {D} - R (real numbers)
®(D,) Is called the potential of D..
Amortized cost ¢;' of the ith operation is:
— ¢' = ¢+ d(D) - d(D,,). (actual cost + potential change)
2i=1"C = 2iz," (¢ + ©(D)) - ©(D;4))

= 2i=1"Cit (D) - (Do)

The Potential Method (cont.)

If ®(D,) > ®(D,), then total amortized cost is an upper
bound of total actual cost.

But we do not know how many operations, so ®(D,) >
®(D,) Is required for any 1.

It is convenient to define ®(D,)=0,and so ®(D;) =0, for all i.
If the potential change is positive (i.e., ®(D,) - ®(D,,)>0),
then c' is an overcharge (so store the increase as
potential),

otherwise, undercharge (discharge the potential to pay the
actual cost).

Potential method: stack operation

Potential for a stack is the number of objects in the stack.
So ®(D,)=0, and ®(D;) >0
Amortized cost of stack operations:
— PUSH:
* Potential change: ®(D)- ®(D,,) =(s+1)-s =1.
* Amortized cost: ¢ = ¢;+ ®(D;) - ©(D,,)=1+1=2.
— POP:
* Potential change: ®(D)- ®(D,,) =(s-1) —s=-1.
* Amortized cost: ¢ = ¢;+ ®(D)) - ®(D, ,)=1+(-1)=0.
— MULTIPOP(S,K): k'=min(s,k)
+ Potential change: ®(D)- ®(D,,) = —k'.
* Amortized cost: ¢ = ¢;+ ®(D)) - ®(D,_,)=k'+(-k")=0.
So amortized cost of each operation is O(1), and total amortized cost of n
operations is O(n).
Since total amortized cost is an upper bound of actual cost, the worse case
cost of n operations is O(n).

Potential method: binary counter

Define the potential of the counter after the ith INCREMENT is
®(D;) =b;, the number of 1's. clearly, ®(D,)>0.

Let us compute amortized cost of an operation

— Suppose the ith operation resets t; bits.

— Actual cost c; of the operation is at most t; +1.

— If b=0, then the ith operation resets all k bits, so b, ;=t=k.
— If b>0, then b=b, ;-t+1

— In either case, b<b, ,-t+1.

— So potential change is ®(D,) - (D, ;) <b, ;-t+1-b, ,=1-t;

— So amortized cost is: ¢, = ¢, + ®(D;) - ®(D,) <t +1+1-t=2.
The total amortized cost of n operations is O(n).
Thus worst case cost is O(n).

Amortized analyses: dynamic table

A nice use of amortized analysis
Table-insertion, table-deletion.

Scenario:

— A table —maybe a hash table

— Do not know how large in advance

— May expend with insertion

— May contract with deletion

— Detailed implementation is not important

Goal:

— O(1) amortized cost.
— Unused space always < constant fraction of allocated space.

Dynamic table

Load factor a = num/size, where num = #
items stored, size = allocated size.

If size =0, then num =0. Call a = 1.
Never allow a > 1.
Keep a >a constant fraction - goal (2).

Dynamic table: expansion with insertion

Table expansion
Consider only insertion.

When the table becomes full, double its
size and reinsert all existing items.

Guarantees that a = 1/2.

Each time we actually insert an item into
the table, it's an elementary insertion.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE-INSERT(T, x)
1 ifsize[T] =0
then allocate rable|T | with 1 slot
size|[T] < 1
if num|T | = size|T]
then allocate new-table with 2 - size[T] slots
insert all items in table[T | into new-table Num[t] ele. insertion
free table|T]
table[T | < new-table
size|[T'] < 2 - size|T]
insert x into table|T] 1 ele. insertion
num|T | < num|[T] + 1

—_—O O 00 ~J O\ B W

=t je——

Initially, num[T] = size[T] = 0.

Aggregate analysis

Running time: Charge 1 per elementary insertion. Count only
elementary insertions,

since all other costs together are constant per call.
ci = actual cost of ith operation

— If not full, ci = 1.

— If full, have i — 1 items in the table at the start of the ith operation. Have
to copy all i — 1 existing items, then insert ith item, = ci =i

Cursory analysis: n operations = ci = O(n) = O(n?) time for n
operations.

Of course, we don’t always expand:
— ci=[1 ifi—1is exact power of 2,
1 otherwise .
So total cost =X,_," ci <n+ X.._,'°9(M 2i<n+2n=3n
gherefore, aggregate analysis says amortized cost per operation =

Accounting analysis

Charge $3 per insertion of x.

— $1 pays for x’s insertion.

— $1 pays for x to be moved in the future.

— $1 pays for some other item to be moved.
Suppose we've just expanded, size = m before next expansion, size
= 2m after next expansion.

Assume that the expansion used up all the credit, so that there’s no
credit stored after the expansion.

Will expand again after another m insertions.

Each insertion will put $1 on one of the m items that were in the
table just after expansion and will put $1 on the item inserted.

Have $2m of credit by next expansion, when there are 2m items to
move. Just enough to pay for the expansion, with no credit left over!

Potential method

Potential method

AT)=2 = num[T] - size[T]
Initially, num = size = 0= & =0.
 Just after expansion, size =2 = num = @=0.

Just before expansion, size = num = @ = num
— have enough potential to pay for moving all
items.

Need @2 0, always.

Always have
—sizeznumz=2Y%size=2 - numz=size = ®=20.

Potential method

Amortized cost of ith operation:
— num, = num after ith operation ,
— Size, = size after ith operation,
— @ = @ after ith operation .
If no expansion:
— Size, = size,_; ,
— num; = num,_; +1,
— ci=1.
Then we have
- C'=¢+@® - D_,=1+ (2num, -size,) — (2num,_, —size,_;) =3.
If expansion:
— Size, = 2size;_, ,
— size;_; = num,_; = num, -1,
— C;=num_; +1 = num,.
Then we have
C’'=c¢+ @ - @_ =num, + (2num, —size;) — (2num,_, —size;_;) = num, +
(2num; —=2(num; —1)) — (2(num; —15 - (num, -1)) = num; + 2 - (num, -1) = 3

32 . g enneens
size; num;
24
16 : 1
@,
8 4
0 I
0 8 16 24 32

Figure 17.3 The effect of a sequence of n TABLE-INSERT operations on the number num; of items
in the table, the number size; of slots in the table, and the potential ®; = 2. num; — size;, each being
measured after the ith operation. The thin line shows num;, the dashed line shows size;, and the thick
line shows ®;. Notice that immediately before an expansion, the potential has built up to the number
of items in the table, and therefore it can pay for moving all the items to the new table. Afterwards,
the potential drops to 0, but it is immediately increased by 2 when the item that caused the expansion

is inserted.

Expansion and contraction

Expansion and contraction

When a drops too low, contract the table.
— Allocate a new, smaller one.

— Copy all items.

Still want

— o bounded from below by a constant,
— amortized cost per operation = O(1).

Measure cost Iin terms of elementary
iInsertions and deletions.

Obvious strategy

Double size when inserting into a full table (when a = 1, so that after
Insertion a would become <1).

Halve size when deletion would make table less than half full (when
a = 1/2, so that after deletion a would become >= 1/2).

Then always have 1/2<a<1.
Suppose we fill table.

— Then insert = double

— 2 deletes = halve

— 2 inserts = double
— 2 deletes = halve

— Cost ofzeach expansion or contraction is ®(n), so total n operation will
be ©(n?).

Problem is that: Not performing enough operations after expansion
or contraction to pay for the next one.

Simple solution

Double as before: when inserting with a = 1 = after doubling, a = 1/2.
Halve size when deleting with a = 1/4 = after halving, a = 1/2,

Thus, immediately after either expansion or contraction, have a = 1/2.
Always have 1/4 < a < 1.

Intuition:

Want to make sure that we perform enough operations between
consecutive expansions/contractions to pay for the change in table
sSize.

Need to delete half the items before contraction.
Need to double number of items before expansion.

Either way, number of operations between expansions/contractions is
at least a constant fraction of number of items copied.

Potential function

D(T) = 2num|[T] - size[T] ifa= >
size[T]/2 —num[T] Ifa <%z.
T empty = @ =0.

a=1/2 = num = 1/2size = 2num = size
= @2 0.

a<1l/2=num<1/2size = ®=0.

Intuition

measures how far from a = 1/2 we are.
— a=1/2 = &=2num-2num = 0.
— a=1= @=2num—-num = num.
— a=1/4 = @=size /2 — num = 4num /2 — num = num.

Therefore, when we double or halve, have enough potential to pay for
moving all num items.

Potential increases linearly between a =1/2 and a = 1, and it also increases
linearly between a = 1/2 and a = 1/4.

Since a has different distances to go to get to 1 or 1/4, starting from 1/2,
rate of increase differs.

For a to go from 1/2 to 1, num increases from size /2 to size, for a total
iIncrease of size /2. @ increases from 0 to size. Thus, @ needs to increase
by 2 for each item inserted. That's why there’s a coefficient of 2 on the
num[T] term in the formula for when a = 1/2.

For a to go from 1/2 to 1/4, num decreases from size /2 to size /4, for a total
decrease of size /4. @increases from O to size /4. Thus, @ needs to
increase by 1 for each item deleted. That's why there’s a coefficient of —1 on
the num[T] term in the formula for when a < 1/2.

Amortized cost for each operation

 Amortized costs: more cases
— Insert, delete
—a21/2,a<1/2 (use a;, since a can vary a |ot)
— size does/doesn’t change

Splay tree

A binary search tree (not balanced)
Height may be larger than log n, even n-1.
However a sequence of n operations takes O(nlog n).

Assumptions: data values are distinct and form a totally
order set

Operations:
— Member(i,S)
— Insert(i,S)
— Delete(i,S)
— Merge(S,S’)
— Split(i,S)

— All based on

* splay(i,S), reorganize tree so that i to be root if ieS, otherwise, the
new root is either max{k €S |k<i} or min{k €S |k>i}

Splay tree (cont.)

* For examples,
— merge(S,S’)
 Call Splay(«, S) and then make S’ the right child
— Delete(1,S), call Splay(i,S), remove I, then
merge(left(i), right(i)).
— Similar for others.
— Constant number of splays called.

Splay tree (cont.)

« Splay operation is based on basic rotate(x)
operation (either left or right).

e Three cases:

— p Is the parent of x and x has not grandparent
e rotate(x)

— X Is the left (or right) child of p and p is the left
(or right) child of g,
« Rotate(p) and then rotate(x)\
— X Is the left (or right) child of p and p is the
right (or left) child of g,

« rotate(x) and then rotate(x)

Case 1: Zip Step

p Is the parent of x and x has not grandparent

rotate(x)

ST

A /B c

i i L 'EI i
— ——— | A1 | A—-1

Case 2: ZIp-Zip Step

X Is the left (or right) child of p and p is the left (or
right) child of g,

Rotate(p) and then rotate(x)\

Case 3: Zip-Zag Step

X 1S the left (or right) child of p and p Is
the right (or left) child of g,
rotate(x) and then rotate(x)

Splay tree (cont.)

Credit invariant. Node x always has at
least log u(x) credits on deposit.

— Where p(S)=log (|S]) and p(x)=i(S(x))
Lemma:

— Each operation splay(x,S) requires no more
than 3(u(S)-u(x))+1 credits to perform the
operation and maintain the credit invariant.

Theorem:

— A sequence of m operations involving n inserts
takes time O(mlog(n)).

Read more about this ...

Summary

 Amortized analysis
— Different from probabilistic analysis

 Three methods and their differences
* how to analyze

	Blank Page

