
Amortized Analysis (chap. 17) 
• Not just consider one operation, but a sequence of 

operations on a given data structure. 

• Average cost over a sequence of operations. 

• Probabilistic analysis: 
– Average case running time: average over all possible inputs for 

one algorithm (operation). 

– If using probability, called expected running time.  

• Amortized analysis: 
– No involvement of probability 

– Average performance on a sequence of operations, even some 
operation is expensive. 

– Guarantee average performance of each operation among the 
sequence in worst case. 
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Three Methods of Amortized Analysis 

• Aggregate analysis: 
– Total cost of n operations/n, 

• Accounting method: 
– Assign each type of operation an (different) amortized cost 

–  overcharge some operations,  

– store the overcharge as credit on specific objects,  

– then use the credit for compensation for some later 
operations. 

• Potential method: 
– Same as accounting method 

– But store the credit as “potential energy” and as a whole. 



Example for amortized analysis 

• Stack operations: 
– PUSH(S,x), O(1) 

– POP(S),  O(1) 

– MULTIPOP(S,k), min(s,k) 
• while not STACK-EMPTY(S) and k>0 

•      do POP(S) 

•           k=k-1 

• Let us consider a sequence of n PUSH, POP, 
MULTIPOP. 
– The worst case cost for MULTIPOP in the sequence is  

O(n), since the stack size is at most n.  

– thus the cost of the sequence is O(n2). Correct, but not 
tight. 



Aggregate Analysis  
• In fact, a sequence of n operations on an 

initially empty stack cost at most O(n). Why? 

Each object can be POP only once (including in MULTIPOP) for  each time  

it is PUSHed. #POPs is at most #PUSHs, which is at most n. 

Thus the average cost of an operation is O(n)/n = O(1). 

Amortized cost in aggregate analysis is defined to be average cost. 



Another example: increasing a binary counter 

• Binary counter of length k, A[0..k-1] of bit 

array. 

• INCREMENT(A) 

1. i0 

2. while i<k and A[i]=1 

3.        do A[i]0 (flip, reset) 

4.              ii+1 

5. if  i<k 

6. then A[i]1  (flip, set) 



Analysis of INCREMENT(A) 

• Cursory analysis:  

– A single execution of INCREMENT takes 

O(k) in the worst case (when A contains all 

1s) 

– So a sequence of n executions takes O(nk) 

in worst case (suppose initial counter is 0).  

– This bound is correct, but not tight. 

• The tight bound is O(n) for n executions. 



Amortized (Aggregate) Analysis of INCREMENT(A) 

Observation: The running time determined by #flips 

                           but not all bits flip each time INCREMENT is called. 

A[0] flips every time, total n times. 

A[1] flips every other time, n/2 times. 

A[2] flips every forth time, n/4 times. 

…. 

for i=0,1,…,k-1, A[i] flips  n/2i times. 

Thus total #flips is i=0
k-1 n/2i 

                               < ni=0
 1/2i 

             =2n.  



Amortized Analysis of INCREMENT(A) 

• Thus the worst case running time is O(n) 

for a sequence of n INCREMENTs. 

• So the amortized cost per operation is 

O(1). 



Amortized Analysis: Accounting Method 

• Idea: 
– Assign differing charges to different operations. 

– The amount of the charge is called amortized cost. 

– amortized cost is more or less than actual cost. 

– When amortized cost > actual cost, the difference is 
saved in specific objects as credits. 

– The credits can be used by later operations whose 
amortized cost < actual cost. 

• As a comparison, in aggregate analysis, all 
operations have same amortized costs. 



Accounting Method (cont.) 

• Conditions:  
– suppose actual cost is ci for the ith operation in the 

sequence, and amortized cost is ci',  

–  i=1
n ci' i=1

n ci  should hold. 

• since we want to show the average cost per 

operation is small using amortized cost, we need the 

total amortized cost is an upper bound of total actual cost. 

• holds for all sequences of operations. 

– Total credits is i=1
n ci' - i=1

n ci , which should be 

nonnegative,  

• Moreover, i=1
t ci' - i=1

t ci  ≥0 for any t>0. 



Accounting Method: Stack Operations 

• Actual costs: 
– PUSH :1, POP :1, MULTIPOP: min(s,k). 

• Let assign the following amortized costs: 
– PUSH:2, POP: 0, MULTIPOP: 0. 

• Similar to a stack of plates in a cafeteria. 
– Suppose $1 represents a unit cost. 

– When pushing a plate, use one dollar to pay the actual cost of the push and 
leave one dollar on the plate as credit. 

– Whenever POPing a plate, the one dollar on the plate is used to pay the actual 
cost of the POP. (same for MULTIPOP). 

– By charging PUSH a little more, do not charge POP or MULTIPOP. 

• The total amortized cost for n PUSH, POP, MULTIPOP is O(n), thus O(1) 
for average amortized cost for each operation. 

• Conditions hold: total amortized cost ≥total actual cost, and amount of 
credits never becomes negative.  



Accounting method: binary counter 

• Let $1 represent each unit of cost (i.e., the flip of one bit). 

• Charge an amortized cost of $2 to set a bit to 1. 

• Whenever a bit is set, use $1 to pay the actual cost, and 
store another $1 on the bit as credit. 

• When a bit is reset, the stored $1 pays the cost. 

• At any point, a 1 in the counter stores $1, the number of 1’s 
is never negative, so is the total credits. 

• At most one bit is set in each operation, so the amortized 
cost of an operation is at most $2. 

• Thus, total amortized cost of n operations is O(n), and 
average is O(1). 



The Potential Method 

• Same as accounting method: something 

prepaid is used later. 

• Different from accounting method 

– The prepaid work not as credit, but as 

“potential energy”, or “potential”. 

– The potential is associated with the data 

structure as a whole rather than with 

specific objects within the data structure. 



The Potential Method (cont.) 

• Initial data structure D0,  

• n operations, resulting in D0, D1,…, Dn with costs c1, 

c2,…, cn.  

• A potential function : {Di}  R (real numbers) 

• (Di) is called the potential of Di. 

• Amortized cost ci' of the ith operation is: 

– ci' = ci + (Di) - (Di-1). (actual cost + potential change) 

• i=1
n ci'

 = i=1
n (ci + (Di) - (Di-1))  

•              = i=1
nci + (Dn) - (D0) 



The Potential Method (cont.) 

• If (Dn)  (D0), then total amortized cost is an upper 
bound of total actual cost. 

• But we do not know how many operations, so (Di)  
(D0) is required for any i. 

• It is convenient to define (D0)=0,and so (Di) 0, for all i. 

• If the potential change is positive (i.e., (Di) - (Di-1)>0), 
then ci' is an overcharge (so store the increase as 
potential),  

• otherwise, undercharge (discharge the potential to pay the 
actual cost).  

 



Potential method: stack operation 

• Potential for a stack is the number of objects in the stack. 

• So (D0)=0, and  (Di) 0 

• Amortized cost of stack operations: 
– PUSH:  

• Potential change: (Di)- (Di-1) =(s+1)-s =1. 

• Amortized cost: ci' = ci + (Di) - (Di-1)=1+1=2. 

– POP:  
• Potential change: (Di)- (Di-1) =(s-1) –s= -1. 

• Amortized cost: ci' = ci + (Di) - (Di-1)=1+(-1)=0. 

– MULTIPOP(S,k):  k'=min(s,k) 
• Potential change: (Di)- (Di-1) = –k'. 

• Amortized cost: ci' = ci + (Di) - (Di-1)=k'+(-k')=0. 

• So amortized cost of each operation is O(1),  and total amortized cost of n 
operations is O(n).  

• Since total amortized cost is an upper bound of actual cost, the worse case 
cost of n operations is O(n).  



Potential method: binary counter 

• Define the potential of the counter after the ith INCREMENT is 
(Di) =bi, the number of 1’s. clearly, (Di)0. 

• Let us compute amortized cost of an operation 
– Suppose the ith operation resets ti bits. 

– Actual cost ci of the operation is at most ti +1.  

– If bi=0, then the ith operation resets all k bits, so bi-1=ti=k. 

– If bi>0, then bi=bi-1-ti+1 

– In either case, bibi-1-ti+1. 

– So potential change is (Di) - (Di-1) bi-1-ti+1-bi-1=1-ti. 

– So amortized cost is: ci' = ci + (Di) - (Di-1)  ti +1+1-ti=2. 

• The total amortized cost of n operations is O(n).  

• Thus worst case cost is O(n).  



Amortized analyses: dynamic table 

• A nice use of amortized analysis 

• Table-insertion, table-deletion. 

• Scenario: 
– A table –maybe a hash table 

– Do not know how large in advance 

– May expend with insertion 

– May contract with deletion 

– Detailed implementation is not important 

• Goal:  
– O(1) amortized cost. 

– Unused space always ≤ constant fraction of allocated space. 

 



Dynamic table 

• Load factor α = num/size, where num = # 

items stored, size = allocated size. 

• If size = 0, then num = 0. Call α = 1. 

• Never allow α > 1. 

• Keep α >a constant fraction  goal (2). 

 



Dynamic table: expansion with insertion 

• Table expansion 

• Consider only insertion. 

• When the table becomes full, double its 

size and reinsert all existing items. 

• Guarantees that α ≥ 1/2. 

• Each time we actually insert an item into 

the table, it’s an elementary insertion. 
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Num[t] ele. insertion 

1 ele. insertion 

Initially, num[T ] = size[T ] = 0. 



Aggregate analysis 

• Running time: Charge 1 per elementary insertion. Count only 
elementary insertions, 

• since all other costs together are constant per call. 

• ci = actual cost of ith operation 
– If not full, ci = 1. 

– If full, have i − 1 items in the table at the start of the ith operation. Have 
to copy all i − 1 existing items, then insert ith item,  ci = i  

• Cursory analysis: n operations  ci = O(n)  O(n2) time for n 
operations. 

• Of course, we don’t always expand: 
– ci =    i   if i − 1 is exact power of 2 , 

             1   otherwise . 

• So total cost =i=1
n ci ≤n+ i=0

log(n) 2i ≤n+2n=3n 

• Therefore, aggregate analysis says amortized cost per operation = 
3. 



Accounting analysis 

• Charge $3 per insertion of x. 
–  $1 pays for x’s insertion. 

–  $1 pays for x to be moved in the future. 

–  $1 pays for some other item to be moved. 

• Suppose we’ve just expanded, size = m before next expansion, size 
= 2m after next expansion. 

• Assume that the expansion used up all the credit, so that there’s no 
credit stored after the expansion. 

• Will expand again after another m insertions. 

• Each insertion will put $1 on one of the m items that were in the 
table just after expansion and will put $1 on the item inserted. 

•  Have $2m of credit by next expansion, when there are 2m items to 
move. Just enough to pay for the expansion, with no credit left over! 

 



Potential method 

• Potential method 

• (T ) = 2 ・ num[T ] − size[T ] 

• Initially, num = size = 0  = 0. 

• • Just after expansion, size = 2 ・ num   = 0. 

• Just before expansion, size = num   = num 
  have enough potential to pay for moving all 
items. 

• Need  ≥ 0, always. 

• Always have 

– size ≥ num ≥ ½ size  2 ・ num ≥ size   ≥ 0 . 



Potential method 

• Amortized cost of ith operation: 
– numi = num after ith operation , 

– sizei = size after ith operation , 

– i =  after ith operation . 

• If no expansion: 
– sizei = sizei−1 , 

– numi = numi−1 +1 , 

– ci = 1 . 

• Then we have 
– Ci’ = ci + i − i−1 = 1 + (2numi −sizei ) − (2numi−1 −sizei−1) =3. 

• If expansion: 
– sizei = 2sizei−1 , 

– sizei−1 = numi−1 = numi −1 , 

– ci = numi−1 +1 = numi. 

• Then we have 

• Ci’ = ci + i − i−1 = numi + (2numi −sizei ) − (2numi−1 −sizei−1) = numi + 
(2numi −2(numi −1)) − (2(numi −1) − (numi −1)) = numi + 2 − (numi −1) = 3 





Expansion and contraction 

• Expansion and contraction 

• When α drops too low, contract the table. 

– Allocate a new, smaller one. 

– Copy all items. 

• Still want 

– α bounded from below by a constant, 

– amortized cost per operation = O(1). 

• Measure cost in terms of elementary 
insertions and deletions. 



Obvious strategy 

• Double size when inserting into a full table (when α = 1, so that after 
insertion α would become <1). 

• Halve size when deletion would make table less than half full (when 
α = 1/2, so that after deletion α would become >= 1/2). 

• Then always have 1/2 ≤ α ≤ 1. 

• Suppose we fill table. 
– Then insert  double 

– 2 deletes  halve 

– 2 inserts  double 

– 2 deletes  halve  

– ・ ・ ・ 

– Cost of each expansion or contraction is (n), so total n operation will 
be (n2). 

• Problem is that: Not performing enough operations after expansion 
or contraction to pay for the next one. 



Simple solution 

• Double as before: when inserting with α = 1  after doubling, α = 1/2. 

• Halve size when deleting with α = 1/4  after halving, α = 1/2. 

• Thus, immediately after either expansion or contraction, have α = 1/2. 

• Always have 1/4 ≤ α ≤ 1. 

• Intuition: 

• Want to make sure that we perform enough operations between 
consecutive expansions/contractions to pay for the change in table 
size. 

• Need to delete half the items before contraction. 

• Need to double number of items before expansion. 

• Either way, number of operations between expansions/contractions is 
at least a constant fraction of number of items copied.  



Potential function 

• (T) =   2num[T] − size[T]  if α ≥ ½ 

                 size[T]/2 −num[T]  ifα < ½ . 

• T empty   = 0. 

• α ≥ 1/2  num ≥ 1/2size  2num ≥ size 

  ≥ 0. 

• α < 1/2  num < 1/2size   ≥ 0. 

 



intuition 

• measures how far from α = 1/2 we are. 
– α = 1/2   = 2num−2num = 0. 

– α = 1   = 2num−num = num. 

–  α = 1/4   = size /2 − num = 4num /2 − num = num. 

• Therefore, when we double or halve, have enough potential to pay for 
moving all num items. 

• Potential increases linearly between α = 1/2 and α = 1, and it also increases 
linearly between α = 1/2 and α = 1/4.  

• Since α has different distances to go to get to 1 or 1/4, starting from 1/2, 
rate of increase differs. 

• For α to go from 1/2 to 1, num increases from size /2 to size, for a total 
increase of size /2.   increases from 0 to size. Thus,   needs to increase 
by 2 for each item inserted. That’s why there’s a coefficient of 2 on the 
num[T ] term in the formula for  when α ≥ 1/2. 

• For α to go from 1/2 to 1/4, num decreases from size /2 to size /4, for a total 
decrease of size /4.  increases from 0 to size /4. Thus,   needs to 
increase by 1 for each item deleted. That’s why there’s a coefficient of −1 on 
the num[T ] term in the formula for  when α < 1/2. 



• Amortized costs: more cases 

– insert, delete 

– α ≥ 1/2, α < 1/2 (use αi, since α can vary a lot) 

– size does/doesn’t change 

 

Amortized cost for each operation 



Splay tree 

• A binary search tree (not balanced) 

• Height may be larger than log n, even n-1. 

• However a sequence of n operations takes O(nlog n). 

• Assumptions: data values are distinct and form a totally 
order set 

• Operations: 
– Member(i,S) 

– Insert(i,S) 

– Delete(i,S) 

– Merge(S,S’) 

– Split(i,S) 

– All based on  
• splay(i,S), reorganize tree so that i to be root if iS, otherwise, the 

new root is either max{k S |k<i} or min{k S |k>i} 



Splay tree (cont.) 

• For examples,  

– merge(S,S’) 
• Call Splay(, S) and then make S’ the right child 

– Delete(i,S),  call Splay(i,S), remove I, then 
merge(left(i), right(i)). 

– Similar for  others. 

– Constant number of splays called. 



Splay tree (cont.) 
• Splay operation is based on basic rotate(x) 

operation (either left or right). 

• Three cases: 

– p is the parent of x and x has not grandparent 
• rotate(x) 

– x is the left (or right) child of p and p is the left 
(or right) child of g,    

• Rotate(p) and then rotate(x)\ 

– x is the left (or right) child of p and p is the 
right (or left) child of g,    

• rotate(x) and then rotate(x) 

 



Case 1: Zip Step 

p is the parent of x and x has not grandparent 
 
rotate(x) 
 



Case 2: Zip-Zip Step 

x is the left (or right) child of p and p is the left (or 
right) child of g,    

 
Rotate(p) and then rotate(x)\ 



Case 3: Zip-Zag Step 

x is the left (or right) child of p and p is 
the right (or left) child of g,    

rotate(x) and then rotate(x) 



Splay tree (cont.) 
 

• Credit invariant: Node x always has at 
least log (x) credits on deposit. 

– Where (S)=log (|S|) and (x)=(S(x)) 

• Lemma: 

– Each operation splay(x,S) requires no more 
than 3((S)-(x))+1 credits to perform the 
operation and maintain the credit invariant. 

• Theorem: 

– A sequence of m operations involving n inserts 
takes time O(mlog(n)). 

• Read more about this …  



Summary 

• Amortized analysis 

– Different from probabilistic analysis  

• Three methods and their differences 

• how to analyze 
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