8 Exercise 7Tb: Composite Pattern

22]

< <interface>> N
Element a
+getTotal():int
E F Composite

-elements:ArrayList

+getTotal():int +getTotal():int +add(e:Element)

+remove(e:Element)

+getTotal():int

G H | |A

+getTotal():int | [+getTotal():int| HgetTotal():int A B C D

e A.I qualify as an Element, all must have a getTotal() operation.

e A..D qualify specifically as a Composite, and automatically have a getTotal() implementation.
e Note that Composite is abstract.

e E..I are just Elements and must provide their own implementation of getTotal().

e Composite maintins an ArrayList, a container of many objects.

e Note that ArrayList has an arrow to MANY (*) Elements.

e add() and remove() allow Elements to be inserted/deleted from the ArrayList.

e Since A..l are Elements, the ArrayList can hold either more Composites, or just Elements.
o Therefore, Composites A..D form the interior nodes of a tree.

e Elements E..I form the leaves of a tree, and cannot have children.

e Composites getTotal() iterates through all children, and calls their getTotal().

o If the child happens to be another Composite, then the same implementation is called.

e This iteration stops at the leaves, and the net result is an accumulation of getTotal() on the tree.

22

r Y Y Y Y

E F G H I

e The arrow to MANY (*) Element children in the previous diagram is expanded in the above.

e Remember that A, B, C, D are Composites, and so can have many children.

e A has 3 children (B, C, D), B has 2 children (E, F), C has 2 children (G, H), D has 1 child (I).
e E..I are just Elements and cannot have children, hence they are leaves.

e But all Elements A..I have a getTotal() method.

e A..D are Composites and all inherit the same getTotal() iterator method.

e In this way, getTotal() is accumulated, starting from A (the root), throughout the entire tree.

23

